FILE | /O PROCESSING AND REGULAR EXPRESSIONS

CHAPTER 4

OPENING AND CLOSING FILES

® Python’s built-in open() function is used to open a file stored on a computer

hard disk or in the cloud. Here’s its syntax:

file object = open(file name [, access mode][, buffering])

=
P

Description

—

2
3
4
5
6
7
8
9

i i |
N - O

Opens a file for reading only; the default mode

Opens a file for reading only in binary format

Opens a file for both reading and writing

Opens a file for both reading and writing in binary format
Opens a file for writing only

Opens a file for writing only in binary format

Opens a file for both writing and reading

Opens a file for both writing and reading in binary format
Opens a file for appending

Opens a file for appending in binary format

Opens a file for both appending and reading

Opens a file for both appending and reading in binary format

READING AND WRITING TO FILES

® The file.write() method is used to write to a fil, and the file.read() method is

used to read data from an opened file.
® A file can be opened for writing (W), reading (r), or both (r+).

®* The rename() method is used to rename a file; it takes two arguments: the

current filename and the new filename.

® Also, the remove() method can be used to delete files by supplying the name

of the file to be deleted as an argument.

DIRECTORIES IN PYTHON

In [35]: import os

0s

0s.
0S.
0sS.

.mkdir("Data 1") # create a directory

mkdir("Data 2")

chdir("Data 3") # create a Childe directory

getcwd() # Get the current working
directory

.rmdir('Data 1') # remove a directory

.xmdir('Data 3') # remove a directory

REGULAR EXPRESSIONS

®* A regular expression is a special sequence of characters that helps find other

strings or sets of strings matching specific patterns; it is a powerful language

for matching text patterns.

Description

Matches beginning of the line.

Matches end of the line.

Matches any single character except a newline.
Matches any single character in brackets.
Matches any single character not in brackets.

Matches zero or more occurrences of the preceding

expression.

re+ Matches one or more occurrence of the preceding expression.

re? Matches zero or one occurrence of the preceding expression.

re{ n} Matches exactly n number of occurrences of the preceding
expression.

re{ n|,} Matches n or more occurrences of the preceding expression.

re{ n, m} Matches at least nand at most m occurrences of the
preceding expression.

al b Matches either a or b.

(re) Groups regular expressions and remembers matched text.

(?imx) Temporarily toggles on /i, m, or x options within a regular
expression.

(?-imx) Temporarily toggles off /, m, or x options within a regular
expression.

(?: 1e) Groups regular expressions without remembering matched
text.

(?imx: re) Temporarily toggles on i, m, or x options within parentheses.

(continued)

Pattern

Description

(?-imx:
re)

¢ —_—
(2= re)

(?! re)

(?> re)
\W
\W
\s
RS
\d
\D

Temporarily toggles off i, m, or x options within parentheses.

Comment.
Specifies the position using a pattern. Doesn’t have a range.

Specifies the position using pattern negation. Doesn’t have a
range.

Matches independent pattern without backiracking.
Matches word characters.

Matches nonword characters.

Matches whitespace. Equivalent to [\t\n\xr\f].

Matches nonwhitespace.

Matches digits. Equivalent to [0-9].

Matches nondigits.

Matches beginning of the string.

Matches end of the string. If a newline exists, it matches just
before the newline.

Matches end of the string.

Matches point where the last match finished.
Matches word boundaries when outside brackets.
Matches nonword boundaries.

Matches newlines, carriage returns, tabs, etc.

Matches nth grouped subexpression.

Matches nth grouped subexpression if it matched already.

SPECIAL CHARACTER CLASSES

Example Description

Matches any character except newline

Matches a digit: [0-9]

Matches a nondigit: [*0-9]

Matches a whitespace character: [\t\r\n\f]
Matches nonwhitespace: [* \t\r\n\f]

Matches a single word character: [A-Za-z0-9]

Matches a nonword character: [*A-Za-z0-9]

REPETITION CLASSES

Example
ruby?
ruby*
ruby+
\d{3}
\d{3,}

\d{3,5}

Description

Matches "rub" or "ruby"; the yis optional
Matches "rub" plus zeros or more ys
Matches "rub" plus one or more ys
Matches exactly three digits

Matches three or more digits

Matches three, four, or five digits

ALTERNATIVES

Example

python|RLang

R(L|Lang))
Python(!+]\?)

Description

Matches "python" or " RLang "
Matches " RL" or " RLang"

"Python" followed by one or more ! or one ?

ANCHORS

Example

"Python
Python$
\APython
Python\Z
\bPython\b
\brub\B

Python(?=!)

Python(?!!)

Description

Matches "Python" at the start of a string or internal line
Matches "Python" at the end of a string or line
Matches "Python" at the start of a string

Matches "Python" at the end of a string

Matches "Python" at a word boundary

\B is nonword boundary: matches "rub" in rube and ruby
but not on its own

Matches "Python," if followed by an exclamation point

Matches "Python," if not followed by an exclamation
point

SUMMARY

The chapter covered how to open files for reading, writing, or both. Furthermore, it

covered how to access the attributes of open files and close all opened sessions.

The chapter covered how to collect data directly for users via the screen.

It covered regular expressions and their patterns and special character usage.

The chapter covered how to apply regular expressions to extract data and how to

use alternatives, anchors, and repetition expressions for data extraction.

EEEEEEEE

