INTRODUCTION TO DATA SCIENCE WITH PYTHON

CHAPTER 1

WHAT IS DATA SCIENCE?

® Data science is the field that comprises everything related to cleaning,

preparing, and analyzing unstructured, semistructured, and structured data.

® This field of science uses a combination of statistics, mathematics,

programming, problem-solving, and data capture to extract insights and

information from data.

THE STAGES OF DATA SCIENCE

O Understand
Business
Requirement

Decision- Data
Making Acquisition

Data
Preparation

Data

Visualization

Data Data
Modeling Exploring

WHERE DATA SCIENCE BEING IMPLEMENTED?

Internet search engine — to deliver the best results for search queries in less time.
Recommendation systems that use a user’s experience to generate recommendation.
Digital advertisement.

Education systems.

Healthcare systems.

And many more!

WHY PYTHONz¢?

® Python is a dynamic and general-purpose programming language that is used

in various fields.

® Python applications — GUI and database programming, client and server-side

applications, and application testing, even automation.

® It was initially developed in the early 1990s by Guido van Rossum and is now

controlled by the not-for-profit Python Software Foundation, sponsored by

Microsoft, Google and others.

BASIC FEATURES OF PYTHON

® Easy to learn and use ® Object-oriented

® Expressive ® Extensible

® Interpreted ® Large standard library

® Cross-platform ®* GUI programming support

® Free and open source ® Integrated

PYTHON ENVIRONMENT AND EDITORS

® Install python
® Install IDE

® Anaconda

* VS Code

® Jupyter

* Google Colab
® Spyder

®* PyCharm

® Etc

BASIC SYNTAX

® |dentifier — a name used to identify a variable, function, class, module, or

other object in the script.

® |dentifier starts with a letter (A-Z or a-z) or an underscore (_) followed by

more letters, numbers or underscores.

®* Python is a case-sensitive language.

PYTHON CONVENTION

® Class names start with an uppercase letter. All other identifiers start with a lowercase

letter.

* Starting an identifier with a single leading underscore indicates that the identifier is

private.

* Starting an identifier with two leading underscores indicates a strongly private

identifier.

® If the identifier also ends with two leading underscores, the identifier is a language-

defined special name.

PYTHON RESERVE KEYWORDS

exec continue global with
finally def if return
for except lambda while

from del import raise

LINES AND INDENTATION

® Line indentation is important in Python because Python does not depend on
braces to indicate blocks of code for class and function definitions or flow

control.

®* Therefore, a code segment block is denoted by line indentation, which is

rigidly enforced.

MULTILINE STATEMENTS

® Statements in Python typically end with a new line.

® But a programmer can use the line continuation character (\) to denote that

the line should continue.

QUOTATION MARKS IN PYTHON

® Python accepts single ('), double ("), and triple ("' or ") quotes to denote

string literals, as long as the same type of quote starts and ends the string.

®* However, triple quotes are used to span the string across multiple lines.

MULTIPLE STATEMENTS ON A SINGLE LINE

® Python allows the use of \n to split line into multiple lines.

® In addition, the semicolon (;) allows multiple statements on a single line if

neither statement starts a new code block.

In [9]: TV=15; name="Nour"; print (name); print ("Welcome
to\nDubai Festival 2018")
Nour

Welcome to
Dubai Festival 2018

READ DATA FROM USERS

In [10]:name = input("Enter your name ")
age = int (input("Enter your age "))
print ("\nName =", name); print ("\nAge =

, age)

Enter your name Nour
Enter your age 12

Name = Nour

Age = 12

DECLARING VARIABLES AND ASSIGNING VALUES

® Python has five standard data types that are used to define the operations
possible on them and the storage method for each of them.
®* Number
*® String
® List

* Tuple

Dictionary

MULTIPLE ASSIGNS

In [13]:age= mark = code =25 In [14]:age, mark, code=10,75,"CIS2403"
print (age) print (age)
print (mark) print (mark)
print (code) print (code)

VARIABLE NAMES AND KEYWORDS

® A variable is an identifier that allocates specific memory space and assigns a

value that could change during the program runtime.

® Variable names should refer to the usage of the variable, so if you want to

create a variable for student age, then you can name it as age or

student_age.

STATEMENTS AND EXPRESSIONS

® A statement is any unit of code that can be executed by a Python interpreter

to get a specific result or perform a specific task.

®* A program contains a sequence of statements, each of which has a specific

purpose during program execution.

®* The expression is a combination of values, variables, and operators that are

evaluated by the interpreter to do a specific task

BASIC OPERATORS IN PYTHON

® Arithmetic operators
® Relational operators
® Assign operators

® Logical operators

Membership operators

|dentify operators

Bitwise operators

ARITHMETIC OPERATORS

Operators Description Example

Performs floor division (gives the integer print (13//5)
value after division)

Performs addition print (13+5)
Performs subtraction print (13-5)
Performs multiplication print [2%5)

Performs division print (13/5)

Returns the remainder after division print (13%5)
(modulus)

Returns an exponent (raises to a power) print (2**3)

RELATIONAL OPERATORS

Operators

Description

Less than

Greater than

Less than or equal to
Greater than or equal to
Equal to

Not equal to

Example

print (13<5)
print (13>5)
print (13<=5)
print (2>=5)
print (13==5)

print (13! =5)

Operators

Description

Example

Assigns

Divides and assigns

Adds and assigns

Subtracts and assigns

x=10
print (x)

X=10;
print (x)
x=10;
print (x)
X=10;
print

ASSIGN OPERATORS

Operators

Description

Example

Multiplies and assigns

Modulus and assigns

Exponent and assigns

Floor division and assigns

X=10; x*=5
print (x)
X=13; X%=5
print (x)
¥=10; X*k=3
print(x)
X=10; X//=2
print(x)

LOGICAL OPERATORS

Operators Description

and

Logical AND (when both conditions
are true, the output will be true)

Logical OR (if any one condition
is true, the output will be true)

Logical NOT (complements the
condition; i.e., reverses it)

Example

x=10>5 and 4>20
print (x)
x=10>5 or 4>20
print (x)

x=not (10<4)

print (x)

Output

False

True

True

PYTHON COMMENTS

In [18]: # Python single line comment
In [19]: '""' This

Is

Multi-line comment''’

FORMATTING STRINGS

® The Python special operator % helps to create formatted output.

® This operator takes two operands, which are a formatted string and a value.

In [20]: print ("pi=%s"%"3.14159")

pi=3.14159

CONVERSION TYPES

Syntax Description

%C Converts to a single character

%d, %1 Converts to a signed decimal integer or long integer

%U Converts to an unsigned decimal integer

%e, hE Converts to a floating point in exponential notation
Converts to a floating point in fixed-decimal notation
Converts to the value shorter of %f and %e
Converts to the value shorter of %f and %E

Converts to an unsigned integer in octal

Converts to a string generated with repr ()

Converts to a string using the stx () function

%Xy %X Converts to an unsigned integer in hexadecimal

THE REPLACEMENT FIELD, {}

® You can use the replacement field, {}, as a name (or index).

® If an index is provided, it is the index of the list of arguments provided in the
field.

In [24]:x = "price is"
print ("{1} {0} {2}".format(x, "The", 1920.345))

The price is 1920.345

THE DATE AND TIME MODULE

In [42]:import time localtime = time.asctime(time.
localtime(time.time()))
print ("Formatted time :
print(time.localtime())
print (time.time())

"

, localtime)

Formatted time : Fri Aug 17 19:12:07 2018

time.struct time(tm year=2018, tm mon=8, tm mday=17,
tm_hour=19, tm min=12, tm_sec=7, tm wday=4, tm yday=229,
tm_isdst=0)

1534533127.8304486

TIME MODULE METHODS

Methods

time()
asctime(time)
sleep(time)

strptime
(String,format)

Description

Returns time in seconds since January 1, 1970.
Returns a 24-character string, e.g., Sat Jun 16 21:27:18 2018.
Used to stop time for the given interval of time.

Returns a tuple with nine time attributes. It receives a string
of date and a format.
time.struct time(tm year=2018, tm mon=6,

tm mday=16, tm hour=0, tm min=0, tm sec=0,

tm wday=3, tm yday=177, tm isdst=-1)

(continued)

TIME MODULE METHODS

Methods Description

gtime()/ Returns struct time, which contains nine time attributes.
gtime(sec)

mktime () Returns the seconds in floating point since the epoch.

strftime Returns the time in a particular format. If the time is not
(format)/ given, the current time in seconds is fetched.
strftime

(format, time)

PYTHON CALENDAR MODULE

Methods

prcal(year)
firstweekday()

isleap(year)

monthcalendar(year,month)

leapdays (year1,year2)

prmonth(year,month)

Description

Prints the whole calendar of the year.

Returns the first weekday. It is by default 0,
which specifies Monday.

Returns a Boolean value, i.e., true or false.
Returns true in the case the given year is a leap
year; otherwise, false.

Returns the given month with each week as
one list.

Returns the number of leap days from year1
to year2.

Prints the given month of the given year.

SELECTION STATEMENTS

Form

Structure

if statement

if(condition):
statements

if-else Statement

if(condition):
statements
else:
statements

Nested if Statement

if (condition):
statements
elif (condition):
statements
else:

statements

ITERATION STATEMENTS

for loop
Executes a sequence of statements multiple times and abbreviates the
code that manages the loop variable.

Nested loops
You can use one or more loop inside any another while, for, ordo..
while loop.

while loop
Repeats a statement or group of statements while a given condition is true.
It tests the condition before executing the loop body.

do {....} while ()

Repeats a statement or group of statements while a given condition is true.
It tests the condition affer executing the loop body.

LOOP CONTROL STATEMENTS

Break statement
Terminates the loop statement and transfers execution to the statement
immediately following the loop.

Continue statement
Causes the loop to skip the remainder of its body and immediately retests
its condition prior to reiterating.

Pass statement

The pass statement is used when a statement is required syntactically but
you do not want any command or code to execute.

TRY AND EXCEPT

® try and except are used to handle unexpected values where you would like to

validate entered values to avoid error occurrence.

In [24]: # Try and Except
astr="Al Fayoum'
errosms=""

try:
istr=int(astr) # error

except:
istr=-1
errosms="\nIncorrect entry"

print ("First Try:", istr , errosms)

STRING PROCESSING

® A string is a sequence of characters that can be accessed by an expression in

brackets called an index.

® Python considers strings by enclosing text in single as well as double quotes.

Forward Indexing

Backward Indexing

STRING SPECIAL OPERATORS

Operator

Description

Outputs

-+

Concatenation: adds values on either side of the
operator

Repetition: creates new strings, concatenating
multiple copies of the same string

Slice: gives the character from the given index

Range slice: gives the characters from the given
range
Membership: returns true if a character exists in

the given string

Membership: returns true if a character does not
exist in the given string

a + bwill give
HelloPython.

a*2 will give
-HelloHello.
al 1] will give e.
a[1:4] will give
ell.

H in a will give
true.

M not in a will
give true.

STRING FORMAT SYMBOLS

Format Symbol Conversion

7%C Character

%S String conversion via
str () prior to formatting

Signed decimal integer
Signed decimal integer

Unsigned decimal integer

(continued)

Format Symbol

Conversion

%0

X

%X

%e

%E

Octal integer

Hexadecimal integer
(lowercase letters)

Hexadecimal integer
(uppercase letters)

Exponential notation (with
lowercase e)

Exponential notation (with
uppercase E)

Floating-point real number
The shorter of %f and %e
The shorter of %f and %E

STRING SLICING AND CONCATENATION

® String slicing refers to a segment of a string that is extracted using an index

or using search methods.

® In addition, the len() method is a built-in function that returns the number of

characters in a string.

® Concatenation enables you to join more than one string together to form

another string.

STRING CONVERSIONS AND FORMATTING
SYMBOLS In [14]:#Convert string to int

Str3y = "123°
str3= int (str3)+1
print (str3)

124

In [15]:#Read and convert data
name=input('Enter your name: ")

age=input('Enter your age: ')
age= int(age) + 1
print ("Name: %s"% name ,"\t Age:%d"% age)

Enter your name: Omar
Enter your age: 41

Name: Omar Age:42

PYTHON STRING FUNCTIONS AND METHODS

Method/Function Description

capitalize() Capitalizes the first character of the string.

count(string, Counts a number of times a substring occurs in a string
begin,end) between the beginning and end indices.

endswith(suffix, Returns a Boolean value if the string terminates with a
begin=0,end=n) given suffix between the beginning and end.

(continued)

Method/Function

Description

find (substring,
beginIndex,
endIndex)

index (subsring,
beginIndex,
endIndex)

isalnum()

isalpha()

isdigit()

islower()

isupper()

isspace()

len(string)
lower ()
upper ()

startswith(str,
begin=0, end=n)

Returns the index value of the string where the substring is

found between the begin index and the end index.

Throws an exception if the string is not found and works
same as the find () method.

Returns true if the characters in the string are
alphanumeric (i.e., letters or numbers) and there is at least
one character. Otherwise, returns false.

Returns true when all the characters are letters and there
is at least one character; otherwise, false.

Returns true if all the characters are digits and there is at
least one character; otherwise, false.

Returns true if the characters of a string are in lowercase;
otherwise, false.

Returns false if the characters of a string are in uppercase;
otherwise, false.

Returns true if the characters of a string are white space;
otherwise, false.

Returns the length of a string.
Converts all the characters of a string to lowercase.
Caonverts all the characters of a string to uppercase.

Returns a Boolean value if the string starts with the given
str between the beginning and end.

Method/Function

Description

swapcase()

1strip()

rstrip()

Inverts the case of all characters in a string.

Removes all leading white space of a string and can also
be used to remove a particular character from |leading
white spaces.

Removes all trailing white space of a string and can also
be used to remove a particular character from trailing
white spaces.

(continued)

THE IN OPERATOR

®* The word in is a Boolean operator that takes two strings and returns true if the

first appears as a substring in the second.

In [43]:var1l =" Higher Colleges of Technology '
var2="College'
var3="g'
print (var2 in vari)
print (var2 not in vari)

TABULAR DATA AND DATA FORMATS

®* Data is available in different forms. It can be unstructured data,

semistructured data, or structured data.

® Python provides different structures to maintain data and to manipulate it such

as variables, lists, dictionaries, tuples, series, panels, and data frames.

PANDAS DATAFRAME

®* A Pandas data frame can be created using the following constructor:

pandas.DataFrame(data, index, columns, dtype, copy)

* A Pandas data frame can be created using various input forms such as the

following:

List Dictionary Series

Numpy ndarrays Another dataframe

PYTHON PANDAS DATA SCIENCE LIBRARY

Provides a mechanism to load data objects from different formats.

Creates efficient data frame objects with default and customized indexing.

Reshapes and pivots date sets.

Provides efficient mechanisms to handle missing data.
®* Merges, groups by, aggregates, and transforms data.

®* Manipulates large data sets by implementing various functionalities such as slicing,
indexing, subsetting, deletion, and insertion.

® Provides efficient time series functionality.

A PANDAS SERIES

® A series is a one-dimensional labeled array capable of holding data of any

type (integer, string, float, Python obijects, etc.).

A PANDAS DATA FRAME

®* A data frame is a two-dimensional data structure.

® In other words, data is aligned in a tabular fashion in rows and columns.

A PANDAS PANELS

® A panel is a 3D container of data that can be created from different data

structures such as from a dictionary of data frames.

PYTHON LAMBDAS AND THE NUMPY LIBRARY

®* The lambda operator is a way to create small anonymous functions, in other

words, functions without names.

® These functions are throwaway functions; they are just needed where they

have been created.

®* Lambda functions are used in combination with the functions filter(), map(), and

reduce().

ANONYMOUS FUNCTIONS

® Anonymous functions refer to functions that aren’t named and are created by

using the keyword lambda.

* A lambda is created without using the def keyword; it takes any number of

arguments and returns an evaluated expression.

THE MAP() FUNCTION

®* The map() function is used to apply a specific function on a sequence of data.

®* The map() function has two arguments.

r = map(func, seq)

THE FILTER() FUNCTION

® The filter() function is an elegant way to filter out all elements of a list for

which the applied function returns true.

filter(func, list1)

THE REDUCE () FUNCTION

®* The reduce() function continually applies the function func to a sequence seq

and returns a single value.

® The reduce() function is used to find the max value in a sequence of integers.

PYTHON NUMPY PACKAGE

®* Numpy is a Python package that stands for “numerical Python.”

® It is a library consisting of multidimensional array objects and a collection of

routines for processing arrays.

®* The Numpy library is used to apply the following operations:
®* Operations related to linear algebra and random number generation

®* Mathematical and logical operations on arrays

® Fourier transforms and routines for shape manipulation

DATA CLEANING AND MANIPULATION TECHNIQUES

* Keeping accurate data is highly important for any data scientist.

® Developing an accurate model and getting accurate predictions from the

applied model depend on the missing values treatment.

®* Therefore, handling missing data is important to make models more accurate

and valid.

DATA CLEANING AND MANIPULATION TECHNIQUES

® Numerous techniques and approaches are used to handle missing data such

as the following:

Fill NA forward
Fill NA backward
Drop missing values

Replace missing (or) generic values

Replace NaN with a scalar value

RUNNING BASIC INFERENTIAL ANALYSES

® Linear regression ® Poisson distribution

® Finding correlation ® Bernoulli distribution

®* Measuring central tendency ® Calculating p-value

®* Measuring variance ® Implementing a Chi-square test

® Normal distribution

® Binomial distribution

SUMMARY

The data science main concepts and life cycle.

The importance of Python programming and its main libraries used for data science

processing.

Different Python data structure use in data science applications.

How to apply basic Python programming techniques.

Initial implementation of abstract series and data frames as the main Python data structure.

Data cleaning and its manipulation techniques.

Running basic inferential statistical analyses.

