Android Application Development

CUSTOMIZED

Android Jetpack (AndroidX)

» Jetpack encompasses a collection of Android libraries that incorporate
best practices and provide backwards compatibility in your Android

ApPPS.

» Jetpack essentially defines a set of recommendations describing how
an Android app project should be structured while providing a set of
libraries and components that make it easier to conform with these
guidelines with the goal of developing reliable apps with less coding
and fewer errors.

» LiveData
» WorkManager
» ViewModel

» Room

» CameraX

Mobile app user experiences

» In most cases, desktop apps have a single-entry point from a desktop or
program launcher, then run as a single, monolithic process.

» Android apps, on the other hand, have a much more complex
structure. A typical Android app contains mulfiple app components,
including activities, fragments, services, content providers, and
broadcast receivers.

» You declare most of these app components in your app manifest. The
Android OS then uses this file to decide how to integrate your app into
the device's overall user experience.

» Given that a properly-written Android app contains multiple
components and that users often interact with multiple apps in a short
period of fime, apps need to adapt to different kinds of user-driven
workflows and tasks.

Example

» Consider what happens when you share a photo in your favorite
social networking app:

» The app triggers a camera intent. The Android OS then launches a
camera app to handle the request. At this point, the user has left the
social networking app, but their experience is still seamless.

» The camera app might frigger other intents, like launching the file
chooser, which may launch yet another app.

» Eventually, the user returns to the social networking app and shares the
photo.

Example (conf)

» Af any point during the process, the user could be interrupted by @
phone call or notification.

» After acting upon this interrupfion, the user expects fo be able to refurn
to, and resume, this photo-sharing process. This app-hopping behavior is
commﬁn on mobile devices, so your app must handle these flows
correctly.

» Keep in mind that mobile devices are also resource-constrained, so at
any time, the operating system might kill some app processes to make
room for new ones.

» Given the conditions of this environment, it's possible for your app
components to be launched individually and out-of-order, and the
operating system or user can destroy them at any fime. Because these
events aren't under your control, you shouldn't store any app data or
state in your app components, and your app components shouldn't
depend on each other.

Common architectural principles

» Separation of concerns

>

It's a common mistake to write all your code in an Activity or a
Fragment.

These Ul-based classes should only contain logic that handles Ul and
operating system interactions.

Keep in mind that you don't own implementations of Activity and
Fragment; rather, these are just glue classes that represent the contract
between the Android OS and your app.

The OS can destroy them at any time based on user interactions or
because of system conditions like low memory.

Common architectural principles

» Drive Ul from a model

» Another important principle is that you should drive your Ul from a
model, preferably a persistent model.

» Models are components that are responsible for handling the data for
an app.

» They're independent from the View objects and app components in
your app, so they're unaffected by the app's lifecycle and the
associated concerns.

» Persistence is ideal for the following reasons:

» Your users don't lose data if the Android OS destroys your app to free up
resources.

» Your app continues to work in cases when a network connection is flaky or
not available.

vowoss TTEEEER

Recommended
app architecture

Remote Data Source

Retrofit

How It works

» Notice that each component depends only on the component one
level below if.

» For example, activities and fragments depend only on a view model.

» The repository is the only class that depends on multiple other classes; in
this example, the repository depends on a persistent data model and @
remote backend data source.

» This design creates a consistent and pleasant user experience.

» Regardless of whether the user comes back to the app several minutes
after they've last closed it or several days later, they instantly see a user's
iInformation that the app persists locally.

» |If this data is stale, the app's repository module starts updating the data
in the background.

ViewModel

» The ViewModel class is designed to store and manage Ul-related
data in a lifecycle conscious way.

» The ViewModel class allows data to survive configuration changes
such as screen rotations.

» Architecture Components provides ViewModel helper class for the
Ul controller that is responsible for preparing data for the Ul.

» ViewModel objects are automatically retained during configuration
changes so that data they hold is immediately available to the next
activity or fragment instance.

» For example, if you need to display a list of users in your app, make
sure to assign responsibility to acquire and keep the list of users to @
ViewModel, instead of an activity or fragment.

LiveDato

» LiveDatais an observable data holder class.

» LiveDatais lifecycle-aware, meaning it respects the lifecycle of
other app components.

» LiveData considers an observer, which is represented by the
Observer class, to be in an active state it its lifecycle is in the
STARTED or RESUMED state.

» Inactive observers registered to watch LiveData objects aren’t
notified about changes.

Advantages of LiveData

VeV - V VvV Vv

Ensures your Ul matches your data state
No memory leaks

No crashes due to stopped activities
No more manual lifecycle handling
Always up to date data

Proper configuration changes

Sharing resources

Observer Pattern

» The Observer Pattern defines a one-to-many dependencies
between objects so that one object changes state, all its
dependents are notifled and updated automatically.

» If this is not simple enough then let's think about a real-world
example :

» You have subscribed to a website(Subject) and it notifies you(Observer)
via email about a new post that is published on their website.

RxJava and event streams

» Previously, you saw how to use RxJava and RxBindings utility o
handle events originating in the Ul.

Events in the UI } ————— - Filter/process '—-— Show results

RxJava and networking

» RxJava and callback methods.

» Libraries for network requests on Android - Retrofit

dependencies {

compile 'com.squareup.retrofit2:retrofit:2.0.0-beta4’

Subscribers

numberOfOrangesObservable =-———
.subscribe (
numberOfOranges ->

Log.d ("Number of oranges: " + numberOfOranges)
) ;

Subscribers are also sometimes called observers, though we don’t use
the term because it’s too easy to confuse with the word observable.

The observable from
which you want to get
updates.

~__ This is the subscriber
~ function. It'll be called

on each value the
observable emits.

Subscribers and marbles

» You can create a marble diagram in which each marble represents
the number of oranges that are in a basket at a given moment.

numberOfOrangeObservable.subscribe (number -> Log.d(number));

LN

LDQ-CIH 2);
L'Dg-':-:ll‘l}? LDg.CIl[?:}; LDg,cll[q};
#II-
_ The subscriber handles
——— the incoming data values
and prints a log.

Decoupling of data sources

» The subscribers itself doesn’t know where values come from; it's only
a simple function.

» The data/values could come from the Ul, network, or even a
triggered timer.

» The subscriberis concerned only with what to do with the value
once it arrives.

RxJava 2 observable types

» Observable

» The most used observable.

» Can emit any number of values and then complete or emit an error.
» Single

» When you expect only one value to be emitted.

» Single either emits a value and completes or emits an error.

» Single can't complete without emifting a value.
» Network responses
» Results from complex calculations

» tolist operator (converts observable into a single list)

RxJava 2 observable types

» Maybe
» Similar to Single, but no guarantee of getting that single value.
» Either emit an item and complete, or just complete.
» Can also emit an error.
» Completable
» Doesn’t emit anything, but just completes or nof.
» May emit an error.

» This is basically an *event” that indicates something happened or
finished.

» Could be used to indicate state change, such as when a fragment is
destroyed.

RxJava 2 observable types

» Flowable

» Inlater versions of RxJava 1, a concept called back pressure was
infroduced to manage situations in which an observable produces too
many items for the subscriber to handle.

» In RxJava 2 the special back-pressure techniques were moved intfo @
Flowable type.

» In Flowable, you're forced to define what happens if the source
produces too many items.

» Overkill and seldom used.

Subscribing to and converting
different observables

» In terms of the terminology used, however, we talk about only
observables and subscribers, regardless of the specific class.

Observable

Single ———» Observer

Maybe

Completable

Flowable —————————P Subscriber

What happens when you make a
normal network requeste

1. Initiate the network request.
» CallretrieveData() to start the request.
2. Pass a callback to the function.
» Define a callback function (point of re-entry).
3. Wait for a response.
» No need to wait, just continue with other codes.
4. Receive datain the callback and do stuff.
» Callback will be triggered with the fresh data from the network.

» Display results in Ul.

What happens when you make a
network request with an observable®e

1. Create a network observable.

» Define retrieveData() to return an observable instead.
2. Subscribe to the network observable.
3. Wait for a response.

4. Receive data in the subscriber and do stuff.

» When everything is ready, the calloack will be triggered with the fresh
data from the network.

» Display results.

Network request as an observable

The complete signal comes
Receive data and have immediately after the only

Start a new request. the observable emit it. data item.
| |

retrieveData()

» The function you'll use for processing the data is triggered at the
point when the data arrives (the marble).

» The subscriber function is executed then and there.

Network request as an observable

» Use the observeOn operator to switch all following operations and
subscribers onto the thread specified

retrieveData ()

.ObgserveOn (AndroidSchedulers.mainThread ())
.subscribe (this: :processData) ;

__ After initiating the network requests,
retrievebata() _| Original thread ~ «—— the execution continues as usual.

_/\ﬁ] Networking thread +— The network request is pappening in
I parallel on the networking thread.

pmceésnataczo':;] Main thread (Ul) <« When the networking is done,

 you can switch the thread back,
if you want to modify the Ul.

Example: An RSS
feed aggregator

' ™y
Breaki ! -
reaking news ~, BBC RSS
] Happening now -

To make things more PRENTS
concrete, you'll make a little Politics revealed
app that can load multiple List<Entry>
RSS feeds and show them in Celebrity scandals - List<Entry>
one list, ordered by date. Another great video
You have two APl endpoints
but only one list of mixed An elk crossed the road < CNN RSS
content. You need to make
two calls and combine the \ J

results.

The feed structure

The parser produces a list of items of type Entry, which it defines itself.
[t looks like this: _
The title of the feed

public static class Entry ({ z:tzx‘::iztw'" show this

public final String id4d; -
public final String title; “ Link to the actual article
public final String link; «————— tnhat the feed contains.

public final long updated; < This is a URL.

Entry(String id, ™~ Timestamp that you'll
String title, use for sorting.
String link,
long updated) {
this.id = 1id;
this.title = title; For convenience,

this.link = link; . .
. ' you define a toString
this.updated = updated; _ method. It'll be used on

} the lists at first.

{ ‘-______________

public String toString ()
return new Date (updated) .toString() + "\n" + title;
}

Geftting the data

1. Start requests for both feeds.
2. Wait until the requests are completed.
3. Call drawlList with the combined results.

purpleFeedObservable = —°—|

N
yvellowFeedObservable T!\?—O—l
‘I:”h\\l R —
A .
drawList(° + Q);

In this case, yellow is ready first, —
so you need to wait for it.

-
.-"',

"%

Handle the combined
data in a subscriber.

_— The lists are

concatenated.

The combinelatest operator

combinelatest saves the
yellow ball and keeps itin — Source
store until the purple arrives. observables

Combined
o output
PN) observable

Combined list of purple ——
and yellow balls.

public class MainActivity extends Activity |
private static final String TAG =
MainActivity.class.getSimpleName () ;

@0verride

protected void onCreate (Bundle savedInstanceState) |
super .onCreate (savedInstanceState) ;
setContentView(R.layout.activity main};

Observable«<List<Entrys> purpleFeedObservable =
FeedCbservable.getFeed (
"https://news.google.com/?output=atom") ;

Observable<List<Entry== yelloeredObskarva_ble = ‘\

FeedObservable.getFeed | -

"http://www.theregister.co.uk/software/
headlines.atom") ;

Observable«<List<Entrys>> combinedObservable =
Observable.combinelLatest (
purpleFeedCbservable, yellowFeedObservable,
(purpleList, yellowList) -> |

The beginning
of the Rx
logic you
already saw,
but here it's

in the Activity
context.

In this version,
the feeds are
retrieved only

— once and

there's no
update. You
might add one
later!

final List<Entry= list = new ArrayListex();

list.addall (purplelList) ;
list.addall (vellowList) ;
return list;

r __..a-""'fa
. 4-*”—!(
combinedObservable
.observeOn (AndroidSchedulers.mainThread())
.8ubscribe(this: :drawlList) ;
1
private void drawList (List<Entrys> listItems)
final ListView list = (ListView) findViewById(R.id.list);

final ArrayAdapter<Entrys> ltemsAdapter = -
new ArrayAdapter<=(this, T—
android.R.layout.simple list item 1, -
listItems);
list.sethAdapter (itemsAdapter) ;

Switch the
thread to the
main thread
and pass the
aggregated list
to the drawing
function.

Create a new
ArrayAdapter
and populate
the list with
your retrieved
items

The Rx
code so

far

Asynchronous data processing
chains

» A processing chain is a bit like a string of dominoes where, at each
step, the incoming piece of data triggers the next operation.

» This scenario can be expressed with one event observable that
gives its output to two subscribers.

Observable that triggers the
action (in this case, it produces
“a push” as data)

>

L
-« -

T Subscribers that
fingerobservable } Invisible “~~—— chime when the
. = ; T~.._ dominoes 7 Y

o X receive the “push.”

Breaking news!

Happening now

Celebrity scandals

An elk crossed the road

Politics revealed

Another great video

Orange news items
> are concatenated to

the list first with the

addAll method.

The blue items are

always on the bottom.

Putting
the list In

order

The map operator

Observable<Circle>
4

These are two separate

observables, but the one ="

below is derived from AN

the one above. ¥

Observable<Square>

The function squarify is called for —
every circle the source observable
emits. You get a new observable

that emits squares at the same rate.

The arrows point straight down,
which means that the transformation
is instantaneous. You also call this
synchronous execution.

Unsorted lists of The sort function
marbles (entries) here is represented

/\‘ as organising marbles
by darkening color.

Observable<List<Entrys=>> O ° /I | "

This time, the input and

output are of this type. O Sort O I I l O -|- O
You just sort the list in LT e . ““““ g °)

the middle. o °

\

\ ¢ ¢ 1
e @ @ sort a list

New, sorted lists. The items are
the same, but are contained
in an instance of a list.

Pass an instance of a list

to a new subscriber. —_
S listObservable]
[sortListByTitle [sortListByDate]
/[listObservable]
[sortListByTitle] L sortListByDate]
«—— Pass the same list after
sorting to longOperation.

=" C H Oiﬂ

Meanwhile, you pass

— the same instance to °
1listOb bl] .
/[: i ¥~ sortListByDate. WIThO '
[sortListByTitle J [sortListByDate]

5 oo
longOperation is using I I I I I I l U TO b I | I -|-
[longoperation O] <« the list for its calculations

on a background thread.

listObservable

[sortListByTitle rtListByDate O]

[longOperation OJ . Two _operations are trying to /,/
— modify the same instance of ——
a list at the same time!
This is bad.

Pass an instance of a list

to a new subscriber. —
\ [listObservable J

[sortListByTitle J/Cj [sortListByDate]

listObservable]

[sortListByTitle) [sortListByDate]
Q - Sort the list and pass

a different reference.

Chain with

[longOperation]

listObservable still has the

°
_— green marble, so listObservable
/[iistobsexrvable } " now gives it to the other sort.
[sortListByTitle] [sortListByDate] | -|_

longOperation is using its

. _— f the list, which
longOperation] — 9“’" _copy 0 . '
[O in this case is sorted.

listObservable

[sortListByTitle sortListByDate OJ

[s i ke O] - Two operations are now using /

— different instances and aren’t —
interfering with each other.

Error handling

» An error in RxJava won't stop the execution of the program itself but
will produce a nofification that's of type error.

» You can then deal with the error similarly to the way you would with
normal values.

N

. .

The number of oranges Something went wrong! Perhaps the guy

keeps increasing as usual. counting the oranges had a heart attack

Nothing special here. and is unable to continue. This observable
will no longer produce values, and the error
should be handled in the subscriber.

Network errors and handling them

combinedﬂbsgrvable The second
.51ﬂ35c1_:‘]:be{ 1 . L L . parameter of
palr -> drawlist (pair.first, pair.second), subscribe is a

error -> Log.e("Error occurred", error) -=—— function that's
) ; called when an
error is emitted

Observable<List<Entry>> combinedObservable = You define both of
Observable.combineLatest (these operations
purpleFeedObservable.retry(3), to be retried three

-

yellowFeedObservable.retry(3), times before

... letting the error
) ; fall though.

What to do when a redl error
comese

» RxJava provides a simple way to accomplish that: you can declare
a policy for returning an empty list in case the feed network
observable emits an error.

An error ends the source
___— observable and causes an
interruption.

— In this case, the orange
ball is an empty list.

purpleFeedObservable
.retry(3)
.onErrorReturn(e -> new ArrayList<>())

Different roles of observables

» An observable emits a value whenever it has a new one.

» It can also complete or throw an error.

» Essentially, there are two uses for the Observable class: event
observables and reactive variables.

Data values of a certain type Completion event
II

Event observables

» Thisis what's typical of an observable that's a plain event source:
» Emitted events are time-based and can be filtered based on the time.
» Events contain little or even no data.

» The clicks observable is a good example of an event observable.

Reactive variables

» An observable can be used as a reactive variable that tells
everyone whenever it changes, as follows:

» Emits its possible previous state immediately to new subscribers

» When _updated, always emits its full state to all subscribers

Numlber of oranges in a basket

// Bn observable for how many oranges are in a basket

Observable<Integer> numberOfOrangeObservable = ..

w
.

» As an example of a reactive variable, imagine a basket of oranges.
You'll use an observable to keep track of changes in the number of
them.

» Whenever someone puts more in or takes them out, the observable
emits the new value immediately.

4. The oranges are
l. You start with an 2. The first orange 3. More oranges are put bought, and you
empty basket. appears. into the same basket. can stop observing.

. . e N

¥

$$%

Numlber of oranges in a basket

» You can make this picture more concise by using an infeger number
to indicate the number of oranges you have at a given moment,

» |In the marble diagrams that represent it, you can see a new marble
every time the number of oranges changes.

Observable<Integer> number0fOrangeObservable

T III -
'+ W,
|.I __\

- 4

| r {
Here you start The number of oranges is increasing End of oranges! Semantically,
counting over time, in this case you see this means that the guy who
them appear one by one. counts oranges has quit his job
and new numbers wil be coming.

Events vs. reactive state

» Click event observable

» Let’s start with an event observable that sends clicks on a particular part
of the Ul.

» Nofice that the clicks are just events in time; you don't even have the
pixel coordinates.

Click event observable
f

J
w—O—O0— 00—

Click Click Click

Events vs. reactive state

» The switch bufton
» Events don’t have much information except for the time.
» But you can add logic that does something with the events.
» You interpret the events into state.

» In this case, you'll take the switch button as an example: clicking it turns
it on and off.

Off On
Click to toggle the state from — (_)) @

on to off, and vice versa.

Events vs. reactive state

» Converting events into state

» |f you consider the clicks you saw before as happening on the switch
button, you can build a layer that interprets the clicks and changes the
button state accordingly.

Switch button click event observable
|'h' , N,

1
F
-
ZF ﬁ“&

Handle button clicks

Is switch on?

[false

false

Events vs. reactive state

» Observable as areactive variable

» We'll now take the last step and create an observable of type
Observable<Boolean> to represent the state indicating whether the
switch button is furned on.

Switch button click event observable

————

SoW1lLCIUI ! | | :
P I Exlm=

-
1
|
|
1
|

true g
|
1
1
|
|
1

Internal state of an observable

The state the observable represents

The observable emits the new state
as an update whenever it changes.

What you saw is a true
observable: one that emits the
full state whenever it changes.

What changes is the variable the
observable represents, and
sometimes it's kept as an internal
state of the observable.

The biggest difference as
compared to the click's
observable is that this one emits
the full state (a Boolean value)
every fime it changes.

In case of an event, you didn’t
even have any data.

Example: Credit card validation
form

» hittps://en.wikipedia.org/wiki/Payment card number

e)
5432/ 231 |

543¢)

CARD

([%238/99)
|

| . |
creditCardNumber expirationDate cvcCode

https://en.wikipedia.org/wiki/Payment_card_number

Validating the numlbers in steps

S R

creditCardNumber conforms to one of the card types.
creditCardNumber passes the check sum function.

cvcCode is of the right length (depending on the card type).
expirationDate is properly formatted (MM/YY).

INpuUTs

Represents the content of the credit card
creditCardNumberObservable *__.-""__- number "'!put' ThE InPUt gWES Strl ngS tD
you, so this observable does as well.

The validation of this field depends on the

~_— content of the credit card input. You need to
e * know the card type to even validate the CVC.

The expiration date. You're being a little
— difficult here requiring the user to also

expirationDate0bservable
— enter the / character.

Qutputs

» Ultimately, you have only one goal - to know whether the enftire
form is valid and you're ready to submit.

» You define this goal as isfFormValidObservable.

This is what you want to get at the end.

«— You change the Submit button state
depending on whether the form is valid.

Solving the equation

—_— These dark gray ones are the inputs

“— have to use them somehow
|nput cvceCodeObservable

expirationDateCbservable

You don’t know yet how
? 7?7 _— to get the isValid Booleans

" out of the input Strings

Output

isFormValidSubscriber

These are all observables: just
the gray ones are the ones you
already have. The rest have to
be somehow processed based
on them.

You know that all of the fields need
to be valid in order for the form to
be valid. Therefore, it seems natural
to create these intermediate green
observables.

The view layer

» On a practical level, you usually put the code that determines what
the program looks like visually in one file, and the information to
display in another file.

Rendering Logic

+ 'The size and color of a o The visibility of a l\cmdil'lg
spinning loader spinner

The position of a thumbnail The logic to get the necessary
of a list item data to show on a list

The positions of circles and Game rules that determine what
crosses on a grid of tic-tac-toe a player is allowed to do

View

» Here are the key characteristics of a view:
» Occupies a part of the visible screen
» Decides how the pixels it contains are rendered
» Represents the endpoint of data processing

» Can contain light logic, such as drop-down states

» It's well worth mentioning that view is a generic name for a layer
that represents all the components of the app that match the
preceding description.

Structure of the file browser example

°
The view consumes the The APl provides data for
data provided by the logic the processing logic.

t‘. \.

v ¥

View <~——t+—— Processing logic =———+——— External API O n d '|'h e
f. |

User opens the app,
show filesystem root

/storage/emulated/0/Pictures

PREVIOUS ROOT i

Screenshots/ Change selected folder

Messenger/
L

- browser

file API

Telegram/

HEGENI3 Ny Process folder contents

Twitter/ l

Render list

Platform containers

» In terms of classes, most of our
examples have consisted of a
master class, which contains

— pretty much everything, and @

Istorage/ sulated/0/Pictures declaration for the view |layout.

On Android, this is typically @

static XML file.

= » We'll call this container class an
ssosares g owner. It's a container for your
code that the platform (in this
case, Android) provides.

Platform container (Android activity) External API

View (layout)

Instagram/

Characteristics of platform
container

» A platform container is created and managed by the platform
operating system.

» The owner could be the application itself, a single screen inside of
the application, or an independent component on a screen.

» On Android, the owner is usually Application, Activity, or Fragment.

Platform container lifecycle

» It should be noted that you can usually recognize them by their
overloaded methods. E.g. onCreate() and onDestroy()

Platform container (Android activity)

The methods of the

container are called —__
" User opens the app,

'ﬂ"hEl"I ﬂ.pp ro pri atE- “\ slorage emadyted, 0/ Pictures : show filesystem root

RN

(' Platform onCreate " Change selected fokder

lifecycle
management Get folder contents
onDestroy

Process folder contents

Render list

View models

External API

ViewModel.java

» AS a program grows,
you want to isolate the
logic in its own module |
(basically a class). | Platform

file API

» We'll call this extracted
logic the view model.

What are the
dependencies of
the reactive logic?

» A view model needs to
encapsulate all the

logic needed to run the
Ul.

Entry points to the chain

View A:m External API

'II K /I Get ‘

- | L e

O Folder
contents
ET=m O
. J -

Output frolln the chain

The characteristics of a view model

» Doesn’'t contain references to any platform-specific components
» Exposes as few inputs and outputs as possible
» Doesn’'t directly use external parts of the code

Migrating existing code Into a view
modael

» The view model can take dependencies in constructor parameters.
These include input sources and handles to external APIs.

» The outputs of the view model are typically getter functions that
return an observable of the data they wish to expose. But it’s
important that the observables emit the last value immediately,
much like BehaviorSubjects covered before.

» Thread changing is usually done outside of the view model,

because it can make testing more difficult. But you'll learn more
about that later.

Constructor
arguments

» A simple way to pass
inputs to the view
model is to use

consfructor arguments.

» They're a good way
too, because they
establish a clear
relationship between
the view model and its
creator.

Class constructor

parameters

rootButtonClick
observable

previousButtonClick
observable

previousButtonClick
observable

\

C
o/

N

View model

Geftting external
dafa in the view
modadel -

7

_ = Get root

constant

To encapsulate the
filesystem API without
calling it directly from Folder

reference

the view model, you

e O->7e{OH
can pass it a single | —
asynchronous function. contents
The function takes a
directory (of type File) b el
and returns an a list of files

observable that emits
the contents of that
directory when the
operation is ready.

Class constructor
parameters —__

rootButtonClick
Observable

previousButtonClick
Observable

previousButtonClick f
Observable

View model

fileList
Observable

LN
~—— Yiew model
outputs

The full
CONSTIructor
of the view
model

FileBrowserViewModel.java

FileBrowserViewModel (

Observable<File> listItemClickObservable,

Observable<Object> previousClickObservable,

Observable<Object> rootClickObserwvable,

File fileSystemRoot,

Funcl<File, Observable<List<File>>> getFiles) |
.listItemClickObservable = listItemClickObservable;
.previousClickObservable = previousClickObservable;
.rootClickObservable = rootClickObserwvable;
fileSystemRoot = fileSystemRoot;

.getFiles = getFiles;

Connecting views and view models

» The name view model comes from the idea that it provides the
data, or the model for the view.

» The view in this case isn't necessarily an instance of the Android
View class, but rather any part of the application that's able to
present data.

View model

/storage/emulated/0/Pictures

Setting up
the view

and the
view model

|
g - Yiew model Setter function
outputs of the view

Exposing
outputs from
view models

» What you want fo
expose is a
BehaviorObservable
that gives the last value
immediately and
subsequent ones as
they're updated.

View model

f'\/

\T,

| Observable <List<File>>
getFilesObservable

FileBrowserViewModel.java

private final BehaviorSubject<List<Files>> filesOutput
= BehaviorSubject.createl() ;

public Observable<List<File>> getFilesObservable() {
return filesOutput.hide(); «

} —_—

The subject is final and has to be initialized only one time. This ensures
that whoever subscribes to that subject can be sure it will stay the same
as long as the view model exists.

Subject.hide()
makes sure the
receiver can't
push more events
in the subject. It
used to be called
.asObservable().

Binding view
models 1o
VIEWS

» Next, you'll create a
subscription between
the output of the view
model and that sefter
function of the view.

View model

|

Subscription
of models
(data values)

Data values to be
shown in the view

=
1 /o/o/: '\\

o/

" Yiew model
outputs

View

/storage/emulated/0/Pictures

Tebegramy/

1446665947853 jpg

i
Cunl'ently Setter function
displayed of the view
data value

MainActivity.java initWithPermissions

FileBrowserViewModel wviewModel =
new FileBrowserViewModel (
listItemClickObservable,
backEventObservable,
homeEventObservable,
root, this::createFilesObservable

) ;

Create the
view model
with Ifs
dependencies

MainActivity.java initWithPermissions

The list of
. subscriptions
viewSubscriptions.add(=<+——— represented
viewModel .getFileListObservable () as Disposable
.0bserveOn (AndroidSchedulers.mainThread()) instances

.subscribe(this: :setFilelList)
) ;

Binding with a subscription

The whole picture

Platform container (activity)

Class constructor
parameters —

View model

rootButtonClick ff E\
observable \h

previousButtonClick ff
observable

filelListSelectedFile {f
observable AN

O —n W l\\“'—"/ filelList
observable

createFilelist

test implementation

ListView

Irnstagramy
Telegram'
144666594 TRSD jpg

Twitter/

View model lifecycle

» The problem is that a part of it creates subscriptions that we were
saving in a CompositeDisposable in the Activity.

» Now if you move the code in the view model, what do you do with
the subscriptions?

subscriptions.add (selectedFile

.flatMap (createFilesObservable)
.subscribe (filesObservable: :onNext)) ;

Saving subscriptions in a view
model

» To manage our subscriptions, add another CompositeDisposable to
the view model instance that will keep track of all subscriptions that
It has created.

» You'll add functions for the view model to create the subscriptions
as well as to release them.

Activity

onCreate

“,;’ Platfonﬂ Subscribe
lifecycle Vlew model
I'It

manageme Unsubscnbe

DnDestlny

The code of the view model

FileBrowserViewModel.java subscribe function

public void subscribe () {
final BehaviorSubject<File> selectedFile =
BehaviorSubject.createDefault (fileSystemRoot) ;

Observable<Files> previcusFileObservable =
previousClickObservable
.map (event ->
selectedFile.getValue ()
.getParentFile()) ; This might look a

bit strange, but it
Observable<File> rootClickObservable = means that you

rootButtonObservable - want to emit the
.map (event -> fileSystemRoot) ; fileSystemRoot
every time the user
subscriptions.add (Observable.merge | clicks the Home
listItemClickObservable, button.
previousFileObservable,
rootFileObservable)
.subscribe (selectedFile)) ;
subscriptions.add(selectedFile ;I;r:t;,::unut!ilg: :.?:5
.switchlflap {QEtFiIESJ . given to you. It takes
.subscribe (filesObservable: :onNext)) ; a file (folder) and

returns its contents
asynchronously.

Activity

(onCreate X
oreresce View
onBesume Subscribe
Py models and
\ \”'~. °
et S Viewmods the Android
“ / °
PN ifecycles

onPause Unsubscribe

onDestroy

. Starting point

[}
= View
Often the APl is called when the I I I O d < E ‘

view model subscribes. This could
__——— be, for instance, the opening of

- phases on

Whether you make the user input

([]
——— subscription here or in the next step
can change depending on the container. I l rO I

™ Upon connecting the view model to
the view, the view model sends the
—————— latest value immediately. This way
it isn’t left in an empty state.

4. User uses the app

View

\ A . . .
5 —— The user starts interacting, thus producing

—————— input to the view model. This might trigger
new APl operations as well.

After disconnecting the view binding you I I I O d e ‘

__— can still receive updates from the API.
They just wouldn’t be shown in the view

A :.‘.'_': (UI) until possibly rebinding the view. p h O S e S O n
Android

All remaining subscriptions are released.
_—— This is important to prevent possible
/ memory leaks.

The view affinity of the code

» These pieces of code, sometimes functions, all have different,
distinct, responsibilities.

» |In terms of areactive application, you can roughly identify sections
that are more about just data and ones that center around showing
something to the user.

» The more our code is affected by the view, the stronger is its view
Offm”y Closer to view
View affinity of code

External Business Processed Ul state Graphics
API logic data for Ul on screen

P0O)Os from a Combine two APl Extract values Drop-downs, Usually handled
general-purpose responsesinto a from data objects, selected tabs, by the operating
network API single data object localize etc. button down system

states

ine

_L | Reactive Ul
Application
with a View

Network —
-‘l-_“-“-“-

Where do view models fit on our
spectrume

» As mentioned, view models are containers for the reactive logic,
which can be everything from external APIs to the final view itself.

» Typically, a view model, however, covers a big chunk right before
the view, and the rest is considered generic data/business logic.

External Business Processed Graphics
API logic data for Ul on screen

Data logic View model

Fundamentals of reactive
architectures

» Data change, process data, render.

Publish change Process data

» On the other hand, you have mechanisms for updating the
database. These include incoming data from the network, user
input, or something read from the disk.

Filesystem

User input

Publish change Process data

Model-View-View mode]

» What you have in the middle, then, is the reactive code. So far,
you've just put that code inside a container, such as Activity, but
now you'll name it and see how to define it as a separate part of
the architecture.

» The idea is to separate the reactive chain from the store as well as
the view. You'll call the rendering part the view from here on, and
the reactive chain becomes the view model.

N
Publish / Reactive chain \ Process
change data

You push an empty grid into In reality, there’s a merge
the chain every time the user operator here, but in the

clicks the Reset button. illustration I've left it out.
| e /

e
GameState I

.'

4

¥ ° °

newGameObservable - gameStateObservabl -

A
GameState

gameStatusObservable playerInTurnObservable

GameStatus GameSymbol ‘ | O S S e S —

decouple

4

The Reset button doesn't take
any input, it only works as an
input to start a new game.

INnternal
relationships of
the model

» You can also putin
some processing logic
that's invisible to the
consumer of the
database.

This could be
considered to represent
relationships between
different parts of the
database.

MNetwork

Filesystem

User input

Reactive chain

b

=~ Reactive chain - Render

A piece of a reactive chain that operates directly
—— on the database. It could, for instance, fetch more
information from the network and save it into

another part of the database.

T

Reactive model

» On Android, there are currently no strongly opinionated popular
frameworks to start doing reactive programming.

» Instead, the approach is to take bits and pieces from libraries that fit
what you want to do.

» You adlready saw RxJava, which is the cornerstone of what you're
planning to build.

» |t provides the glue between different parts of the architecture, as
well o conveniently create the processing chains.

Web server W e b
Internally, the server
s e e server as a
A'website ?ffers o
e kil repository

It’s usually possible to

either request a listing — " qL Of en TiTieS

or a specific ID.

Jmusic

Client Server

fvideos

HTTP GET —

C r——] A

The client computer sends a /
request to retrieve data (or
web page showing that data).

Client Server W e b

C [r)
»
Server finds the correct / < E ‘ ’ < E S -|-
resource from its database.
Client Server
Response O W
HTTP GET =

v et

The server responds —
with the requested data.

Client . Server
The client renders the

response for the user to see.
‘_
e,

L r——1]

Web server

/ /videos \=

WL g
/videos/<id> - \ Videos

)

Modael as
O

i

/pictures - Pictures

\ /music /-4/ Music

/»(EJD

repository

Store instance \

/ e of entities

}/ Model

getV1dED{1nt J_d]
getPictures () @ Store

\ EtHuElC{]/L

A part of the program needs

data, and calls the function

Model on the store.

o — Create subscription

through the observable.

_———————— The store sends the requested

— — The logic updates

the view.

.getVideos()
Reactive logic >
@ Store
Observable Model
Reactive logic >
@ Store
x”"ﬁ
Subscribe Model
Reactive logic =
éj Store
Model
Reactive logic =2
° @ Store
//
View - ° Reactive logic -t

value through the subscription.

Retrieving
data from
the

modael

In terms of a mental model, the

entl A piece
store acts as a “server,” whereas the
reactive logic you w@ the “client.” Of C O d e
- - = Aas d

“client”

.getVideos ()

Reactive logic Subscribe

List of videos

Revising the file browser

External API FRP program logic User interface

User opens the app,
Get show filesystem root

filesystem root

Change selected folder Screenshots/
Click
previous Messenger/

reference
Get folder contents Instagram/

Telegram/

Process folder contents List tem 1446665947853 jpg
List of click '

Render list

Update list

File browser graph with a model

FRP program logic

User opens the app,

Get root show filesystem root

constant

Change selected folder Screenshots/
Folder Click

reference previous Messenger/

File selectedFolder Instagram/

Model Telegram/

List<File> fileList List item 1446665947853 jpg
click —
List of \ ,
contents

Render list
Update list

Constructing the
model for the file
browser — existing

>

In the file browser you have
two main observables for
state: the selected file
(folder), and the list of files
within that folder.

These two observables were
linked together in the view
model in a way that
calculates the fileList based
on the selectedFolder.

Home button, Previous button,
and clicking of a list item are
handled in the view model.

View model /
/

BehaviorSubject

v

File selectedFolder

- Update logic

Observable

View

getFiles

List=File= filelList

/ Filesystem API
I
L

Ul controls

filelListView

Moving
state
from view

modael
INTo the
modael

You'llmove all the state from the view model to the model.
This includes the selected folder and the resulting file list.

This means you can take this part out of the view model as well and
move it intfo the model instead.

Our proposed architecture will thus be a Model-View Model-View
with divided responsibilities.

Some of the core logic
was moved away from
the view model.

Model !;’ View model View
BehaviorSubject /
File selectedFolder r Update logic Ul controls
|
L
getFiles
Observable /
List<File> fileList] ~ fileListView

public class FileBrowserModel ({
private final BehaviorSubject<File> selectedFile
= BehaviorSubject.createDefault () ;
private final Observable<List<File>>
filesListObservable;

public FileBrowserModel (
File fileSystemRoot,
Function<File, Observable<List<File>>>
getFiles) {
filesListObservable = selectedFile
.sewitchMap (file -> —
getFiles.apply (file) -
.subscribeOn (Schedulers.io())

) ;

public Observable<File> getSelectedFile() (

return selectedFile.hide(); <4+——

public void putSelectedFile(File file) { -

selectedFile.onNext (file) ;

public Observable<List<File>> getFilesList () {

return filesListObservable;

The model
contains

~ selectedFile as a

mini “store.” The
BehaviorSubject
from the view
model was moved
here.

| omitted error
catching here; you
can see the full

" code in the online

examples.

You don't expose
the subjects
directly from the
model. It has full
control over its
data.

The reason you say
“put” instead of
“set” is semantics:
you don’t “set”
the value of the
selected folder but
“push” another
value that will
replace it.

FileBrowser

model
Implementation

Creating

the
model

Where you create the model depends on who needs to use
it and how long it needs to exist.

In our case, you have only one Android activity, so you can
create your model there.

It just shouldn't be created in a view model - that would be
strange, considering the view model is its consumer, not the
owner. The activity (owner) makes the connection.

Both are created in the
platform container.

File Browser activity /
/ /

View model > Model
/ \
Activity is the Android The view model gets a
platform container reference to the model.

that has a lifecycle.

Creating the model - codes

» In terms of code, you can connect the view model to the model in
the onCreate function of the MainActivity. (The view model will be
activated later in initWithPermissions because you first need to ask
for filesystem privileges.)

MainActivity.java onCreate The getFiles
function was

. ___— moved from the
fileBrowserModel = 4 - view model to

new FileBrowserModel (this::createFilesObservable) ; the model. The

view model no
longer has a direct
viewModel = new FileBrowserViewModel (7 reference.

fileBrowserModel, listItemClickObservable,
backEventObservable, homeEventObservable,
root

) ;

// Somewhere in the initialization code F:> S;)
BehaviorSubject<File> selectedFolderSubject = ...; -|-h e I I . O d e ‘

Observable.merge (fro I I The
listItemClickObservable,

fileChangeBackEventObservable,

. view model
ileChangeHomeEventObservable) i O‘d COdeS

.subscribe (
selectedFolderSubject::onNext

) ;

// Somewhere in the initialization code

Observable<File> selectedFolder

= fileBrowserModel.getSelectedFolder();

Observable.merge (
listItemClickObservable,

fileChangeBackEventObservable,
fileChangeHomeEventObservable)

.subscribe (
fileBrowserModel::putSelectedFolder

) ;

Updating
the model
from the

view model
- updated

FileBrowserViewModel.java subscribe method

subscriptions.add(selectedFile
.switchMap(file ->

getFiles.apply(file)
.subscribeOn(Schedulers.i10()})

Removing
the logic
from the

view mode|
— old codes

FileBrowserViewModel.java subscribe method

subscriptions.add(fileBrowserModel.getFilesList()

.subscribe(filesSubject::onNext));

Removing the logic from the

view model - updated

Rules of the model and its
consumers

» The modelis the only source of fruth.
» The model gives the latest value first.
» All consumers of the model have to be ready to receive updates.

Single source of truth

» The modelis the Wikipedia of your app.

Gorgonzola
These are different

articles you can find in ——_

the “repository of truth.”

WIKIPEDIA

The Free Encyclopedia

Persisting app state

» The question you need to ask is, what information is required to
initialize the app? This will be the state you'll want to persist to reload
the app.

BehaviorSubject

File selectedFolder

\l
getFiles
7

Observable

List<File> filelList

Atomic state
(“the truth™)
|

Model

BehaviorSubject

File selectedFolder

Observable

List<File> fileList

Derived
state

De penldency
(“formula™)

LW .
view

Atomic state

>

>

You'll name this information
that can’t be calculated
from anything else atomic
state.

The list of files in the selected
folder isn’'t atomic state
because you can always
refrieve it again through the
API.

1. Selected folder is updated.

The update comes from the

Ul through thle view model

Model View model
/
BehaviorSubject ‘|:.I
@ File selectedFolder D
Disk file :
getFiles
Observable /—"
Ligt<File> fileList —
2. Acopy is saved onto the device disk.
Model View model
BehaviorSubject
@ -—D—— File selectedFolder |~
Fy b
Disk file |
getFiles
The chain now has an - Observable _/
additional side effect P
that writes to the disk. ErTre e
3. The nomal execution continues.
Model View mode
BehaviorsSubject
ﬂ? File selectedFolder
Disk file \
getFiles
|
. . Ob bi
The state is persisted servable D/
on the disk until it’s List<File> fileList
changed again

FileBrowserViewModel.java

public FileBrowserModel (

Function<File, 0Observable<List<File=>>

getFiles,

SharedPreferences sharedPreferences)

selectedFolder
.observeln (Schedulers.iol())
.subscrikbe (folder -=
sharedPreferences.edit () -
.putString(
SELECTED FOLDER KEY,
folder.getibsclutePath()
)

.commit()) ;

—_

{ =

SharedPreferences
is given as a
reference from
outside. This could
be changed into

a function that
writes to disk.

You use the edit
command of
SharedPreferences
to open a writer.
In the end, you
commit the
changes to affect
the operation.

Code for
saving the
model

stare

1. The app opens.

Model

BehaviorSubject

<7

\iewn mnda
view mode

File selectedFolder

/ Disk file

f

Previously persisted
data on the disk file

.
getFiles
Observable /
List<File> fileList |—
2. You either load data from the disk
or set it to default (first start).
Model View mode
ile system root
’ e BehaviorSubject
§ --_D_ - File selectedFolder
&] ‘ \-.
Disk file |
getFiles
Observable S

This time you've
saved state, so you'll
use that to initialize.

List<File> rilelList

3. The reactive chain is triggered
with the persisted data.

Model

BehaviorSubject

View mode
view mode

File selectedFolder

/ Disk file

|
The persisted state is
used only once when
opening the app.

B

getFiles

Observable /

Nelolellgle
the model

state on
startup

With the added code, the beginning of the constructor first loads the
state and then proceeds with the rest of the initialization.

This particular code will result in one extra write operation as the
Behaviorsubject emits its value immediately, but because it doesn’t
cause a loop, you'll leave it as a further improvement.

FileBrowserModel.java

public FileBrowserModel |
Function<File, Observable<Llist<File>=>> getFiles,
String defaultPath, -+ 0000000

SharedPreferences sharedPreferences) {

// Load previously persisted value or use the default
String persistedSelectedFolder Path = sharedPreferences
.getString (SELECTED FOLDER KEY, defaultPath);

File initialSelectedFolder =
new File(persistedSelectedFolderPath) ;

selectedFolder = BehaviorSubject
.createDefault (initialselectedFolder) ;

Provided as a
dependency from
the owner. In

our case, it's the
activity, but you
could start using
a dependency
injection
framework too.

A string for the
default folder to
use in case no
persisted one is
available

This is the part
that loads the
value or uses the
default folder path
given.

Code for
loading

the model
stare

BehaviorSubjects and stores

» The simple one-value store

» Perhaps the most reduced persisted store on Android can be
constructed from a BehaviorSubject and a disk backing.

BehaviorSubject + SharedPreferences Store

SharedPreferences

SharedPreferencesStore.java

public class SharedPreferencesStore<Ts> |
This is the subject

—_ you previously
————___ had directly in the
model code. Now
you'll replace it
final String defaultValue, with an instance of
a store.

private final BehaviorSubject<T> subject; -
public SharedPreferencesStore (final String key,

final SharedPreferences sharedPreferences,

final Function<T, String: serialize, -

final Function<String, T> deserialize) { -m._,__:_'“ ~—__ Because you use

T initialvValue = deserialize.apply(—— strings as a format
for persisting,

you need to add

) ; functions to tell
the store how to
change from file

sharedPreferences.getString(key, defaultvalue)

subject = BehaviorSubject

.createDefault (initialvalue) ; to string, and vice
subject.subscribe (value -= versa.
sharedPreferences.edit ()
.putstring(key, serialize.apply(value)) S|m |e
.commit () p
YO You don't save the SharedPreferencesStore
) T subscription at
T this time. Usually
T ————— stores live so long
. . that their internal
public void put (T wvalue) { subscriptions are
subject.onWNext (value) ; released as the
} app is completely
shut down.

public Observable<Ts> getStream() {

return subject.hide();

Using SharedPreferencessStore

» The model you have will now internally use the store as a way to
store the selectedFolder.

» Notice that to the outside, it looks exactly the same as before.

File selectedFolder

Observable

List<File> filelList

Using SharedPreferencesStore -

codes

FileBrowserModel.java constructor

selectedFolderStore = new SharedPreferencessStoress |
SELECTED FOLDER EKEY, -
defaultPath,
sharedPreferences,
file -= file.getAbsclutePath(),
path -> new File(path) -

Arbitrary string
that will be used
as the filename for
SharedPreferences

These two are

the serializing

and deserializing
functions between
strings and files.

View models and the view

» The view layeris everything and anything that displays the
processed data to the user.

Process data

Feichdata | Viewmodel [Setprocossed
4 N N, data

/ \]

Network/APls
- y
I'|""-..
\'\
T

— _‘_'_._,_,..-'

Push data

-

Example: Tic-tac-toe

Here's a game that
has been played for
three rounds.The
players can place
their icons in only the

empty squares.

Because the circle

. always starts, in

this particular game
the circle is about
to win.

The different moves of tic-tac-toe

» In the game of fic-tac-toe we have a two-dimensional grid of three
kinds of states: empty, a circle, or a cross.

» In the simplest form, this can be done with an enumerated type and
a 3 x 3 array.

enum SymbolType SymbolType[3][3] grid

o

All of the possible
states of a single cell

in our playing field
A container for the

state of the game

The different moves of fic-tac-toe

All data at this point is of type
SymbolType[3][3].

With this you can draw the grid and

the symbols. Jeta bpe rew
You'll create a view that knows how view.setData(..) O X
to draw data of this type. It'll have @ SymbolType(31(3] . X010
setter setData(SymbolType|[][] datq) / % o %

that GCCGDTS the data. The view knt;ws how to

As soon as new data is given, the render data of this type.
view is redrawn to represent the new
information.

Drawing the game grid

Create

The owner creates the interface component. .
setbata(() «— The view knows how to draw data

The interface component is initialized with an of a certain type—in this case, circles.
empty grid. —O0—0—
. Invalidate
Call setData() to trigger update the viow

setData invalidates the state of the view.

The redraw is scheduled.

Wait for

The old graphics are cleared and updated
new data

with ones based on the new data.
Redraw the view

with new data

The draw function

» The custom view class
» The first thing you'll do is create the new class.

» Everything related only to drawing will be kept
there.

GameGridView.java

public class GameGridView extends View ({

private GameSymbol [] [] gameState;

The draw function

» Updating the data that the view presents

» You need to add a way to tell your custom view that it has something
new to show.

GameGridView.java

public void setData (SymbolTypel[] [] gameState) ({ This is a member
variable you created
for the View class.
this.gameState = gameState; - Notice that it's just
a holder for the data
and shouldn’t be
exposed outside

this.invalidate () ; this class!

// Save data for drawing

i

// Schedule redraw

@0verride

protected void onDraw (Canvas canvas) {
You're skipping
some more

clearCanvas (canvas) ; - straightforward
code, but you can
see it in the online
// Draw background code example.

// Clear the old drawings

drawGridLines (canvas) ;

// Draw symbols by looping through them

: . , . This is a double loop
for (int i = 0; 1 < 3; i++) { that goes through

for (int n = 0; n < 3; n++) { your entire 3x 3
. . array. Using magic
Symbol symbol = this.datali] [n] numbers in the code

if (symbol == Symbol.CIRCLE) { instead of constants
is bad, but you'll

drawCircle (canvas, i, n) ; change that later.

} else if (symbol == Symbol.CROSS) {

drawCross (canvas, 1, n);

Trying out the view with hardcoded

values

2
AndroidTicTacToe

Winner:
CIRCLE

OX
),

MainActivity onCreate

GameGridView gameGridView =
(GameGridView) findViewById(R.id.grid view) ;

gameGridView.setData (

new GameSymbol [] []1 {
new GameSymbol[] {

GameSymbol .CIRCLE, GameSymbol.EMPTY, GameSymbol.EMPTY
b
new GameSymbol[] {

GameSymbol .CIRCLE, GameSymbol.CROSS, GameSymbol.EMPTY
¥
new GameSymbol[] {

GameSymbol .CROSS, GameSymbol.EMPTY, GameSymbol.EMPTY

Making It interactive

» You're getting closer to the reactive part of the app.

» The interaction will be done with an Rx chain, but let’s see what you
plan to do.

It's the turn of cross. The A cross is added to your

«— user touches the screen «— gameState, and the screen

in a location that’s empty. is automatically updated.

Geftting the touch events

» You'll again use the RxBinding library to get a wrapper that gives
you the touches on the view as an event observable.

» Normally, you'd register a listener for fouch events, but this way, you
can use the event processing capabilities of RxJava.

MainActivity.java onCreate

// Retrieve a reference to the created view
GameGridView gameGridView =

(GameGridView) findViewById(R.id.grid view) ;

// Get an observable with the RxBinding wrapper
Observable<MotionEvents> userTouchObservable =

RxView.touches (gameGridView) ;

The reactive processing chain

» When the user clicks on the playing grid, you want 1o insert the
correct symbol into that location and then change the turn.

» To know which grid, tile the user clicked, you run the click event
through a simple processing chain. The steps are roughly as follows:

1. Start with the relative (x, y) coordinate of where the user clicked inside
the grid view.

2. Determine into which tile the click landed and emit this simplified
coordinate. Instead of screen coordinates, these are indexes for the
grid array you have.

3. Update the grid by placing a new symbol in the location you
determined.

|
userTouchObservable Py

| The

1. getPixelPos |
I

: : reqactive

(X Y) o
2. getGrid*Ennrdinate HI . p rO C e SS | n g

) chain

3. updateGrid

l Grid

view.setData O

Grid coordinate resolving code

» To get back to the touch processing, in step 2 you have to identity
which grid tile the user touched.

. The event coordinates are defined in screen
o« pixels. An (x, y) coordinate could be, for
Click x instance, (200px, 500px).

View height

v _ View width and view height are the
- physical pixel sizes on the screen. You'll
" try to get away from these view-specific
View width values as soon in the chain as possible.

The algorithm

» For the horizontal grid position, you first divide the x coordinate of
the click by the width of the whole view on the screen.

» You'llget a number between O and 1, 0.5 being in the middle.

You multiply the number from the first step by the number of
tiles in the grid on the horizontal axis, which in this case is 3.
Rounding down the number, you get the horizontal grid position.

2 What you'll have is a function that takes pixel coordinates and
produces GridPositions. To distinguish these two you create a
new data type that holds these values. In this case they range from
(0,0) to (2, 2). Indexing here starts from 0.

MainActivity getGridPosition

private static GridPosition getGridPosition/(
float touchX, float touchY,
int viewWidthPixels, int viewHeightPixels,

int gridWidth, int gridHeight) {

// Horizontal GridPosition coordinate as i
float rx = touchX / You sometimes use
i and n to make
(float) (viewWidthPixels+1) ; a distinction that
(

int) (rx * gridwidth) ; these_aren’t pixel_
coordinates. But it's
easier to remember

// Vertical GridPosition coordinate as n - that x is horizontal

and y is vertical, so
float ry = touchY / we won'’t stick to

(float) (viewHeightPixels+1) ; _— them all the time.

int i =

(
int n = (int) (ry * gridHeight) ;

return new GridPosition (i, n);

MainActivity onCreate

// Get the touches
Observable<GridPositions> userTouchEventObservable =
RxView.touches (gridView, motionEvent -> true)
dilter (ev ->
ev.getAction() == MotionEvent .ACTION UP) ;

Listen to the touch event

Get the grid position

» With this event observable, you can resolve a stream of GridPositions
that allow you to later update the game grid.

// Get the GridPosition from the pixel coordinate

Observable<GridPosition> gridPositionEventObservable =
userTouchEventObservable
.map(ev ->
getGridPosition (

ev.getX (), ev.get¥(),

gameGridView.getWidth() ,
gameGridView.getHeight () ,

GRID WIDTH, GRID HEIGHT

The extendead
g I'CI p h userTouchObservable
sfructure i

Initial value to start

the game with i (x,y)
| A

To complefe the graph on \ getGridCoordinate
the previous page, you can + — —
observe that to update the EMPTY GRTD y CridPosition — Endof event observables
grid, you need the last grid as updateGrid -~
well. . |

GameGrid I

- —-- - - i __— To update the grid,

Otherwise, you'll always be | you need the last one.
making the first move and gameGridobservable |-

forgetting the previous ones.

«—— The only subscriber that

view.setData renders the data.

Immutable data and the game

grid

Shared grid instance

Drawing logic

The drawing function starts its loop:

_— First circle is drawn. You traverse

the grid from left to right, and
top down.

Here you’re halfway through.

_— But now someone else modifies

your data. The rest of the drawing
is done with new data!

The remaining symbols are
_—drawn based on different data,
and the results are completely
unpredictable.

Making a copy of the grid

» Java provides many ways to copy an array, but for our simple
pUrposes, You can copy each row of the raw array with
System.arraycopy, which is very efficient.

» |t takes the source array, position in the source, destination, the
position in the destination, as well as the total number of items to

copy.

oy, 1O
I change Emit

O | O] —
B

GameGrid type and functional
setters

» What you'll create first is a class to hold the entire game grid.

» Previously, you had just a two-dimensional array GridSymbol[][], but
to encapsulate more functionality, you'll change it into a type:

class GameGrid { Pay attention to this

GameSymbol getSymbolAt (int x, int vy) setter. It isn’t the

. . traditional kind of
GameGrid setSymbolAt (< Java setter but made

GameSymbol symbol, int x, int vy) in a functional style.
It doesn’'t modify the
original instance.

public GameGrid setSymbolAt (
GameSymbol symbol, int i, int n) {
GameGrid copy = this.copvy () ;
copy.grid[i] [n] = symbol;
return copy;

GameGrid type and functional setters

Putting It
oll

AP B 2+ & C

fogether

Cyclic graphs
with
withLatestFrom

» |nsome cases, you
need the last values
from two observables to
calculate a third one,
but you want only one
of them to frigger the
chain below.

1. Insert initial value

touchObservable

T
! GridPositi
T

on

updateGrid

\

T
| GameGrid

—%i:}—* gridObservable

2. Value is propagated

touchObservable

T
| GridPositi
T

updateGrid

Y

T
| GameGrid

gridObservable

¢

3. Stand by, waiting for input

touchObservable

T
i GridPosition

1

updateGrid

Y

T
! GameGrid

gridObservable

|

4. New input arrives

touchObservable

T
| GridPosition

[]

|
¥

updateGrid

A

| GameGrid

gridObservable

l

Cyclic graphs
with
withLatestFrom

Step 4 is where the
withLatestFrom function is
doing its thing.

It's a lot like combinelatest,
but it's triggered on only
new values from the primary
observable.

In this case, the triggering
one is the observable that
emits the GridCoordinates
calculated from the touch
events.

5. Updating grid

touchObservable

T
i GridPosition
1

|
i
¥

[:] updateGrid (:) -

GameGrid

T
I
I
I
I
I
I
I
¥

gridObservable

|

6. New, updated, grid created

touchObservable
T
i GridPosition
|
1
¥
updateGrid -~
T \\
(i)GameGrid i
! 4
A J/
gridObservable

|

7. Propagating new grid

touchObservable

T
i GridPosition

updateGrid -~

T
! GameGrid
Y

gridObservable

¢

8. Stand by, waiting for input

touchObservable
] GridPosition
updateGrid -—

T
! GameGrid
A

gridObserwvable

Cyclic graphs with .withLatestFrom

» You can think about it like this: you want to update the grid with the
touch events only when the user is fouching - not whenever you
have a GameGrid for some other reason (also, in this case, that
would create an infinite loop).

touchesOnGrid
This lambda
function is the

(gridCoordinate, gameGrid) -> - combine function
that's executed

gameGrid.setSymbol (on all new

o : values of the
gridCoordinate, Symbol.CIRCLE) gridCoordinate.

.withLatestFrom(gameGridSubject,

Log the calculated positions

» Finally, until you have the grid updating function ready, you can see
whether it works by logging the events. You'd expect values
between (0, 0) and (2, 2).

// For starters just log the results

gridPositionEventObservable
.subscribe (gridPosition ->
Log.d (TAG, gridPosition.toString())) ;

Wrapping the logic info a view
modael

View model

A reference to the grid
coordinate observable —
is given in a constructor.

Clicked grid \ Full 3x 3

coordinates :" } symbul grid

""-.
\ H
P

Click observable is 1\ \ setData function

converted into grid — T that receives the
coordinates data for drawing

GameViewModel.java

public class GameViewModel ({ —
private final CompositeDisposable subscriptions =

new CompositeDisposablel() ;

private final BehaviorSubject<GameGrids>
gameGridSubject = BehaviorSubject.create() ;

private final Observable<GridPositions>
touchEventQObservable;

public GameViewModel (-—

Observable<GridPosition> touchEventObservable)

this.touchEventObservable = touchEventObservable;

public Observable<GameCrids> getGameCGrid() { -
return gameGridSubject.hide () ;

You'll hold the
subscriptions

you create here.
They can then be
released with the
container lifecycle.

The input is an
observable that
gives events
indicating which
GridPosition was
clicked.

The output is a
behavior that
returns the latest
GameGrid. It'll
be connected to
the view that can
draw it.

Coffee break

& ‘Y 1w 11:08 » You'll create a little app that
can show alerts (dialogs)

Chapter7CoffeeBreak based on the input written in
the text fields.

Title » You'll define the inputs as

Warning Observables, and it's your job

—— | fo combine them to produce a

EREWS dialog box.

The device is hot!

» Keep in mind which
observables emit events and
which ones represent
permanent states.

SHOW ALERT

