
Android Application Development
CUSTOMIZED



LiveData



Android Jetpack (AndroidX)

 Jetpack encompasses a collection of Android libraries that incorporate 
best practices and provide backwards compatibility in your Android 
apps.

 Jetpack essentially defines a set of recommendations describing how 
an Android app project should be structured while providing a set of 
libraries and components that make it easier to conform with these 
guidelines with the goal of developing reliable apps with less coding 
and fewer errors.

 LiveData

 WorkManager

 ViewModel

 Room

 CameraX



Mobile app user experiences

 In most cases, desktop apps have a single-entry point from a desktop or 
program launcher, then run as a single, monolithic process. 

 Android apps, on the other hand, have a much more complex 
structure. A typical Android app contains multiple app components, 
including activities, fragments, services, content providers, and 
broadcast receivers.

 You declare most of these app components in your app manifest. The 
Android OS then uses this file to decide how to integrate your app into 
the device's overall user experience. 

 Given that a properly-written Android app contains multiple 
components and that users often interact with multiple apps in a short 
period of time, apps need to adapt to different kinds of user-driven 
workflows and tasks.



Example

 Consider what happens when you share a photo in your favorite 

social networking app:

 The app triggers a camera intent. The Android OS then launches a 

camera app to handle the request. At this point, the user has left the 

social networking app, but their experience is still seamless.

 The camera app might trigger other intents, like launching the file 

chooser, which may launch yet another app.

 Eventually, the user returns to the social networking app and shares the 

photo.



Example (cont)

 At any point during the process, the user could be interrupted by a 
phone call or notification. 

 After acting upon this interruption, the user expects to be able to return 
to, and resume, this photo-sharing process. This app-hopping behavior is 
common on mobile devices, so your app must handle these flows 
correctly.

 Keep in mind that mobile devices are also resource-constrained, so at 
any time, the operating system might kill some app processes to make 
room for new ones.

 Given the conditions of this environment, it's possible for your app 
components to be launched individually and out-of-order, and the 
operating system or user can destroy them at any time. Because these 
events aren't under your control, you shouldn't store any app data or 
state in your app components, and your app components shouldn't 
depend on each other.



Common architectural principles

 Separation of concerns

 It's a common mistake to write all your code in an Activity or a 

Fragment.

 These UI-based classes should only contain logic that handles UI and 

operating system interactions.

 Keep in mind that you don't own implementations of Activity and 

Fragment; rather, these are just glue classes that represent the contract 

between the Android OS and your app. 

 The OS can destroy them at any time based on user interactions or 

because of system conditions like low memory. 



Common architectural principles

 Drive UI from a model

 Another important principle is that you should drive your UI from a 
model, preferably a persistent model.

 Models are components that are responsible for handling the data for 
an app.

 They're independent from the View objects and app components in 
your app, so they're unaffected by the app's lifecycle and the 
associated concerns.

 Persistence is ideal for the following reasons:

 Your users don't lose data if the Android OS destroys your app to free up 
resources.

 Your app continues to work in cases when a network connection is flaky or 
not available.



Recommended 
app architecture



How it works

 Notice that each component depends only on the component one 
level below it. 

 For example, activities and fragments depend only on a view model. 

 The repository is the only class that depends on multiple other classes; in 
this example, the repository depends on a persistent data model and a 
remote backend data source.

 This design creates a consistent and pleasant user experience.

 Regardless of whether the user comes back to the app several minutes 
after they've last closed it or several days later, they instantly see a user's 
information that the app persists locally. 

 If this data is stale, the app's repository module starts updating the data 
in the background.



ViewModel

 The ViewModel class is designed to store and manage UI-related 
data in a lifecycle conscious way. 

 The ViewModel class allows data to survive configuration changes 
such as screen rotations.

 Architecture Components provides ViewModel helper class for the 
UI controller that is responsible for preparing data for the UI. 

 ViewModel objects are automatically retained during configuration 
changes so that data they hold is immediately available to the next 
activity or fragment instance. 

 For example, if you need to display a list of users in your app, make 
sure to assign responsibility to acquire and keep the list of users to a 
ViewModel, instead of an activity or fragment.



LiveData

 LiveData is an observable data holder class.

 LiveData is lifecycle-aware, meaning it respects the lifecycle of 

other app components.

 LiveData considers an observer, which is represented by the 

Observer class, to be in an active state it its lifecycle is in the 

STARTED or RESUMED state.

 Inactive observers registered to watch LiveData objects aren’t 

notified about changes.



Advantages of LiveData

 Ensures your UI matches your data state

 No memory leaks

 No crashes due to stopped activities

 No more manual lifecycle handling

 Always up to date data

 Proper configuration changes

 Sharing resources



Observer Pattern

 The Observer Pattern defines a one-to-many dependencies 

between objects so that one object changes state, all its 

dependents are notified and updated automatically.

 If this is not simple enough then let’s think about a real-world 

example :

 You have subscribed to a website(Subject) and it notifies you(Observer) 

via email about a new post that is published on their website.



Networking with Observables



RxJava and event streams

 Previously, you saw how to use RxJava and RxBindings utility to 

handle events originating in the UI.



RxJava and networking

 RxJava and callback methods.

 Libraries for network requests on Android - Retrofit



Subscribers



Subscribers and marbles

 You can create a marble diagram in which each marble represents 

the number of oranges that are in a basket at a given moment.



Decoupling of data sources

 The subscribers itself doesn’t know where values come from; it’s only 

a simple function.

 The data/values could come from the UI, network, or even a 

triggered timer.

 The subscriber is concerned only with what to do with the value 

once it arrives.



RxJava 2 observable types

 Observable

 The most used observable.

 Can emit any number of values and then complete or emit an error.

 Single

 When you expect only one value to be emitted.

 Single either emits a value and completes or emits an error.

 Single can’t complete without emitting a value.

 Network responses

 Results from complex calculations

 toList operator (converts observable into a single list)



RxJava 2 observable types

 Maybe

 Similar to Single, but no guarantee of getting that single value.

 Either emit an item and complete, or just complete.

 Can also emit an error.

 Completable

 Doesn’t emit anything, but just completes or not.

 May emit an error.

 This is basically an “event” that indicates something happened or 

finished.

 Could be used to indicate state change, such as when a fragment is 

destroyed.



RxJava 2 observable types

 Flowable

 In later versions of RxJava 1, a concept called back pressure was 

introduced to manage situations in which an observable produces too 

many items for the subscriber to handle.

 In RxJava 2 the special back-pressure techniques were moved into a 

Flowable type.

 In Flowable, you’re forced to define what happens if the source 

produces too many items.

 Overkill and seldom used.



Subscribing to and converting

different observables

 In terms of the terminology used, however, we talk about only 

observables and subscribers, regardless of the specific class.



What happens when you make a

normal network request?

1. Initiate the network request.

 Call retrieveData() to start the request.

2. Pass a callback to the function.

 Define a callback function (point of re-entry).

3. Wait for a response.

 No need to wait, just continue with other codes.

4. Receive data in the callback and do stuff.

 Callback will be triggered with the fresh data from the network.

 Display results in UI.



What happens when you make a

network request with an observable?

1. Create a network observable.

 Define retrieveData() to return an observable instead.

2. Subscribe to the network observable.

3. Wait for a response.

4. Receive data in the subscriber and do stuff.

 When everything is ready, the callback will be triggered with the fresh 

data from the network.

 Display results.



Network request as an observable

 The function you’ll use for processing the data is triggered at the 

point when the data arrives (the marble).

 The subscriber function is executed then and there.



Network request as an observable

 Use the observeOn operator to switch all following operations and 

subscribers onto the thread specified



Example: An RSS 
feed aggregator

 To make things more 

concrete, you’ll make a little 

app that can load multiple 

RSS feeds and show them in 
one list, ordered by date.

 You have two API endpoints 

but only one list of mixed 

content. You need to make 

two calls and combine the 
results.



The feed structure



Getting the data

1. Start requests for both feeds.

2. Wait until the requests are completed.

3. Call drawList with the combined results.



The combineLatest operator



The Rx 

code so 

far



Asynchronous data processing 

chains

 A processing chain is a bit like a string of dominoes where, at each 

step, the incoming piece of data triggers the next operation.

 This scenario can be expressed with one event observable that 

gives its output to two subscribers. 



Putting 

the list in 

order



The map operator



Using 

map to 

sort a list



Chain 
without 
immutability



Chain with 
immutable 
data



Error handling

 An error in RxJava won’t stop the execution of the program itself but 

will produce a notification that’s of type error.

 You can then deal with the error similarly to the way you would with 

normal values.



Network errors and handling them



What to do when a real error 

comes?

 RxJava provides a simple way to accomplish that: you can declare 

a policy for returning an empty list in case the feed network 

observable emits an error.



Building Data Processing Chains



Different roles of observables

 An observable emits a value whenever it has a new one. 

 It can also complete or throw an error.

 Essentially, there are two uses for the Observable class: event 
observables and reactive variables.



Event observables

 This is what’s typical of an observable that’s a plain event source:

 Emitted events are time-based and can be filtered based on the time.

 Events contain little or even no data.

 The clicks observable is a good example of an event observable.



Reactive variables

 An observable can be used as a reactive variable that tells 

everyone whenever it changes, as follows:

 Emits its possible previous state immediately to new subscribers

 When _updated, always emits its full state to all subscribers



Number of oranges in a basket

 As an example of a reactive variable, imagine a basket of oranges. 

You’ll use an observable to keep track of changes in the number of 

them.

 Whenever someone puts more in or takes them out, the observable 

emits the new value immediately.



Number of oranges in a basket

 You can make this picture more concise by using an integer number 

to indicate the number of oranges you have at a given moment. 

 In the marble diagrams that represent it, you can see a new marble 

every time the number of oranges changes.



Events vs. reactive state

 Click event observable

 Let’s start with an event observable that sends clicks on a particular part 

of the UI. 

 Notice that the clicks are just events in time; you don’t even have the 

pixel coordinates.



Events vs. reactive state

 The switch button

 Events don’t have much information except for the time. 

 But you can add logic that does something with the events. 

 You interpret the events into state. 

 In this case, you’ll take the switch button as an example: clicking it turns 

it on and off.



Events vs. reactive state

 Converting events into state

 If you consider the clicks you saw before as happening on the switch 

button, you can build a layer that interprets the clicks and changes the 

button state accordingly.



Events vs. reactive state

 Observable as a reactive variable

 We’ll now take the last step and create an observable of type 

Observable<Boolean> to represent the state indicating whether the 

switch button is turned on.



Internal state of an observable

 What you saw is a true 
observable: one that emits the 
full state whenever it changes. 

 What changes is the variable the 
observable represents, and 
sometimes it’s kept as an internal 
state of the observable. 

 The biggest difference as 
compared to the click's 
observable is that this one emits 
the full state (a Boolean value) 
every time it changes. 

 In case of an event, you didn’t 
even have any data.



Example: Credit card validation 

form

 https://en.wikipedia.org/wiki/Payment_card_number

https://en.wikipedia.org/wiki/Payment_card_number


Validating the numbers in steps

1. creditCardNumber conforms to one of the card types.

2. creditCardNumber passes the check sum function.

3. cvcCode is of the right length (depending on the card type).

4. expirationDate is properly formatted (MM/YY).



Inputs



Outputs

 Ultimately, you have only one goal - to know whether the entire 

form is valid and you’re ready to submit. 

 You define this goal as isFormValidObservable.



Solving the equation



Reactive View Models



The view layer

 On a practical level, you usually put the code that determines what 

the program looks like visually in one file, and the information to 

display in another file.



View

 Here are the key characteristics of a view:

 Occupies a part of the visible screen

 Decides how the pixels it contains are rendered

 Represents the endpoint of data processing

 Can contain light logic, such as drop-down states

 It’s well worth mentioning that view is a generic name for a layer 

that represents all the components of the app that match the 

preceding description.



The view 
and the 
file 
browser



Platform containers

 In terms of classes, most of our 

examples have consisted of a 

master class, which contains 

pretty much everything, and a 

declaration for the view layout. 

On Android, this is typically a 

static XML file.

 We’ll call this container class an 

owner. It’s a container for your 
code that the platform (in this 

case, Android) provides.



Characteristics of platform 

container

 A platform container is created and managed by the platform 

operating system.

 The owner could be the application itself, a single screen inside of 

the application, or an independent component on a screen.

 On Android, the owner is usually Application, Activity, or Fragment.



Platform container lifecycle

 It should be noted that you can usually recognize them by their 

overloaded methods. E.g. onCreate() and onDestroy()



View models

 As a program grows, 

you want to isolate the 

logic in its own module 

(basically a class). 

 We’ll call this extracted 

logic the view model.



What are the 
dependencies of 
the reactive logic?

 A view model needs to 

encapsulate all the 

logic needed to run the 

UI.



The characteristics of a view model

 Doesn’t contain references to any platform-specific components

 Exposes as few inputs and outputs as possible

 Doesn’t directly use external parts of the code



Migrating existing code into a view 

model

 The view model can take dependencies in constructor parameters. 

These include input sources and handles to external APIs.

 The outputs of the view model are typically getter functions that 

return an observable of the data they wish to expose. But it’s 

important that the observables emit the last value immediately, 

much like BehaviorSubjects covered before.

 Thread changing is usually done outside of the view model, 

because it can make testing more difficult. But you’ll learn more 

about that later.



Constructor 

arguments

 A simple way to pass 

inputs to the view 

model is to use 

constructor arguments. 

 They’re a good way 

too, because they 

establish a clear 

relationship between 

the view model and its 
creator.



Getting external 
data in the view 
model

 To encapsulate the 
filesystem API without 
calling it directly from 
the view model, you 
can pass it a single 
asynchronous function.

 The function takes a 
directory (of type File) 
and returns an 
observable that emits 
the contents of that 
directory when the 
operation is ready.



The full 
constructor 
of the view 
model





Connecting views and view models

 The name view model comes from the idea that it provides the 

data, or the model for the view. 

 The view in this case isn’t necessarily an instance of the Android 

View class, but rather any part of the application that’s able to 

present data.



Setting up 
the view 
and the 
view model



Exposing 
outputs from 
view models

 What you want to 

expose is a 

BehaviorObservable 

that gives the last value 
immediately and 

subsequent ones as 

they’re updated.





Binding view 
models to 
views

 Next, you’ll create a 

subscription between 

the output of the view 

model and that setter 
function of the view.



Create the 
view model 
with its 
dependencies



Binding with a subscription



The whole picture



View model lifecycle

 The problem is that a part of it creates subscriptions that we were 

saving in a CompositeDisposable in the Activity.

 Now if you move the code in the view model, what do you do with 

the subscriptions?



Saving subscriptions in a view 

model

 To manage our subscriptions, add another CompositeDisposable to 

the view model instance that will keep track of all subscriptions that 

it has created.

 You’ll add functions for the view model to create the subscriptions 

as well as to release them.



The code of the view model



View 
models and 
the Android 
lifecycles



View 
model 
phases on 
Android



View 
model 
phases on 
Android



The view affinity of the code

 These pieces of code, sometimes functions, all have different, 

distinct, responsibilities. 

 In terms of a reactive application, you can roughly identify sections 

that are more about just data and ones that center around showing 

something to the user.

 The more our code is affected by the view, the stronger is its view 

affinity.



The 
Reactive UI 
Application 
with a View



Where do view models fit on our 

spectrum?

 As mentioned, view models are containers for the reactive logic, 

which can be everything from external APIs to the final view itself. 

 Typically, a view model, however, covers a big chunk right before 

the view, and the rest is considered generic data/business logic.



Reactive Architectures



Fundamentals of reactive 

architectures

 Data change, process data, render.

 On the other hand, you have mechanisms for updating the 

database. These include incoming data from the network, user 

input, or something read from the disk.



Model-View-View model

 What you have in the middle, then, is the reactive code. So far, 

you’ve just put that code inside a container, such as Activity, but 

now you’ll name it and see how to define it as a separate part of 

the architecture.

 The idea is to separate the reactive chain from the store as well as 

the view. You’ll call the rendering part the view from here on, and 

the reactive chain becomes the view model.



Splitting 
classes -
decouple



Internal 
relationships of 
the model

 You can also put in 

some processing logic 

that’s invisible to the 

consumer of the 
database. 

 This could be 

considered to represent 

relationships between 

different parts of the 
database.



Reactive model

 On Android, there are currently no strongly opinionated popular 

frameworks to start doing reactive programming. 

 Instead, the approach is to take bits and pieces from libraries that fit 

what you want to do. 

 You already saw RxJava, which is the cornerstone of what you’re 

planning to build. 

 It provides the glue between different parts of the architecture, as 

well to conveniently create the processing chains.



Web 
server as a 
repository 
of entities



Web 

request 

flow



Model as 
a 
repository 
of entities



Retrieving 
data from 
the 
model



A piece 
of code 
as a 
“client”



Revising the file browser



File browser graph with a model



Constructing the 
model for the file
browser – existing

 In the file browser you have 
two main observables for 
state: the selected file 
(folder), and the list of files 
within that folder. 

 These two observables were 
linked together in the view 
model in a way that 
calculates the fileList based 
on the selectedFolder.



Moving 

state 

from view 

model 

into the 

model

 You’ll move all the state from the view model to the model. 

 This includes the selected folder and the resulting file list.

 This means you can take this part out of the view model as well and 
move it into the model instead.

 Our proposed architecture will thus be a Model-View Model-View
with divided responsibilities.



FileBrowser 
model 
implementation



Creating 

the 

model

 Where you create the model depends on who needs to use 
it and how long it needs to exist. 

 In our case, you have only one Android activity, so you can 
create your model there. 

 It just shouldn’t be created in a view model - that would be 
strange, considering the view model is its consumer, not the 
owner. The activity (owner) makes the connection.



Creating the model - codes

 In terms of code, you can connect the view model to the model in 

the onCreate function of the MainActivity. (The view model will be 

activated later in initWithPermissions because you first need to ask 

for filesystem privileges.)



Updating 
the model 
from the 
view model 
– old codes



Updating 
the model 
from the 
view model 
- updated



Removing 
the logic 
from the 
view model 
– old codes



Removing the logic from the 
view model - updated



Rules of the model and its 

consumers

 The model is the only source of truth.

 The model gives the latest value first.

 All consumers of the model have to be ready to receive updates.



Single source of truth

 The model is the Wikipedia of your app.



Persisting app state

 The question you need to ask is, what information is required to 

initialize the app? This will be the state you’ll want to persist to reload 

the app.



Atomic state

 You’ll name this information 

that can’t be calculated 

from anything else atomic 

state. 

 The list of files in the selected 

folder isn’t atomic state 

because you can always 

retrieve it again through the 

API.



Saving 
the 
model 
state



Code for 
saving the 
model 
state



Loading 
the model 
state on 
startup



Code for 
loading 
the model 
state



BehaviorSubjects and stores

 The simple one-value store

 Perhaps the most reduced persisted store on Android can be 

constructed from a BehaviorSubject and a disk backing.



Simple 
SharedPreferencesStore



Using SharedPreferencesStore

 The model you have will now internally use the store as a way to

store the selectedFolder. 

 Notice that to the outside, it looks exactly the same as before.



Using SharedPreferencesStore -

codes



Developing with View Models



View models and the view

 The view layer is everything and anything that displays the 

processed data to the user. 



Example: Tic-tac-toe



The different moves of tic-tac-toe

 In the game of tic-tac-toe we have a two-dimensional grid of three 

kinds of states: empty, a circle, or a cross. 

 In the simplest form, this can be done with an enumerated type and 

a 3 × 3 array.



The different moves of tic-tac-toe

 All data at this point is of type 
SymbolType[3][3].

 With this you can draw the grid and 
the symbols.

 You’ll create a view that knows how 
to draw data of this type. It’ll have a 
setter setData(SymbolType[][] data) 
that accepts the data. 

 As soon as new data is given, the 
view is redrawn to represent the new 
information.



Drawing the game grid

 Create

 The owner creates the interface component.

 The interface component is initialized with an 
empty grid.

 Call setData() to trigger update

 setData invalidates the state of the view.

 The redraw is scheduled.

 The old graphics are cleared and updated 
with ones based on the new data.



The draw function

 The custom view class

 The first thing you’ll do is create the new class. 

 Everything related only to drawing will be kept 

there.



The draw function

 Updating the data that the view presents

 You need to add a way to tell your custom view that it has something 

new to show.





Trying out the view with hardcoded 

values



Making it interactive

 You’re getting closer to the reactive part of the app.

 The interaction will be done with an Rx chain, but let’s see what you 

plan to do.



Getting the touch events

 You’ll again use the RxBinding library to get a wrapper that gives 

you the touches on the view as an event observable. 

 Normally, you’d register a listener for touch events, but this way, you 

can use the event processing capabilities of RxJava.



The reactive processing chain

 When the user clicks on the playing grid, you want to insert the 

correct symbol into that location and then change the turn.

 To know which grid, tile the user clicked, you run the click event 

through a simple processing chain. The steps are roughly as follows:

1. Start with the relative (x, y) coordinate of where the user clicked inside 

the grid view.

2. Determine into which tile the click landed and emit this simplified 

coordinate. Instead of screen coordinates, these are indexes for the 

grid array you have.

3. Update the grid by placing a new symbol in the location you 

determined.



The 
reactive 
processing 
chain



Grid coordinate resolving code

 To get back to the touch processing, in step 2 you have to identify 

which grid tile the user touched.



The algorithm

 For the horizontal grid position, you first divide the x coordinate of 

the click by the width of the whole view on the screen. 

 You’ll get a number between 0 and 1, 0.5 being in the middle.





Listen to the touch event



Get the grid position

 With this event observable, you can resolve a stream of GridPositions

that allow you to later update the game grid.



The extended 
graph 
structure

 To complete the graph on 
the previous page, you can 
observe that to update the 
grid, you need the last grid as 
well. 

 Otherwise, you’ll always be 
making the first move and 
forgetting the previous ones.



Immutable data and the game 

grid



Making a copy of the grid

 Java provides many ways to copy an array, but for our simple 

purposes, you can copy each row of the raw array with 

System.arraycopy, which is very efficient. 

 It takes the source array, position in the source, destination, the 

position in the destination, as well as the total number of items to 

copy.



GameGrid type and functional 

setters

 What you’ll create first is a class to hold the entire game grid.

 Previously, you had just a two-dimensional array GridSymbol[][], but 

to encapsulate more functionality, you’ll change it into a type:



GameGrid type and functional setters



Putting it 

all 

together



Cyclic graphs 
with 
.withLatestFrom

 In some cases, you 

need the last values 

from two observables to 

calculate a third one, 
but you want only one 

of them to trigger the 

chain below.



Cyclic graphs 
with 
.withLatestFrom

 Step 4 is where the 
.withLatestFrom function is 
doing its thing. 

 It’s a lot like combineLatest, 
but it’s triggered on only 
new values from the primary 
observable. 

 In this case, the triggering 
one is the observable that 
emits the GridCoordinates 
calculated from the touch 
events.



Cyclic graphs with .withLatestFrom

 You can think about it like this: you want to update the grid with the 

touch events only when the user is touching - not whenever you 

have a GameGrid for some other reason (also, in this case, that 

would create an infinite loop).



Log the calculated positions

 Finally, until you have the grid updating function ready, you can see 

whether it works by logging the events. You’d expect values 

between (0, 0) and (2, 2).



Wrapping the logic into a view 

model



View 

model 

code



Coffee break

 You’ll create a little app that 

can show alerts (dialogs) 

based on the input written in 

the text fields.

 You’ll define the inputs as 
Observables, and it’s your job 

to combine them to produce a 

dialog box. 

 Keep in mind which 

observables emit events and 

which ones represent 

permanent states.


