o
/.,/ AN /MM/NW//////////////ZE\\ ‘

N

. e sl -
2

” pagapiet® =

= o oa g ey Ay TR -

P . 4
e ‘I&‘*ﬁ"‘vs‘\ M

ot
s sl : SEE .

T AR AF A apad s

e
O
-
Q
O
O
>
0
a
&
O
O
RS
Q
Q
<
O
O
.o
C
<

o
Q@
)
Z
<

Course Contents

Lesson 1:
Introduction to Kotlin

Lesson 3: Functions
Lesson 2: Control and Object-
Flow Statements Oriented

Programming (OOP)

Lesson 4: Android
Framework and
Android Studio

Lesson 5: Creating
User Interface Ul

Lesson 6: Android
Layouts, Styles,

Theme and Menus

Lesson 10: Location-
Aware Apps: Using

Lesson 7: Toasts, Lesson 8: Android
Activities, Dialogs, Snackbarr,
Navigations, and Menus, WebView
Views and Notfificatfions

Lesson 9: Android
s Storage, SQLite and e
Content Providers

GPS and Google
Maps

Your Trainer

Asmaliza Ahzan @ Emma asmaliza@iverson.com.my

Participants

Infroduction

Name

Job Title/Description

Programming Experience(s)

Expectation(s)

Thank you! ©

Infroduction to Kotlin

LESSON 1

July 2011, JetBrains unveiled Project Kotlin — a
new language for the JVM.

It has been under development for a year.

Kotlin History

as quickly as Java.

project under the Apache 2 license.

Android.

Koftlin

Advantages

Easy to learn and

Performan s
SHOMNANCE infuitive

Free integration
with Android
Studio

Interoperability

with Java Expressive

Null safety

Google
announced Kotlin
as an official
language for
Android during
Google I/O 2017

JDK

Java Development Kit

Kotlin Source Code J

\ 4

{ Integrated development euwironn‘.ent}

IDE >

TN

Java Debugger

Kotlin Compiler

% Project.Class

S

Class Loader Set of Libraries

P T e K N

Byte Code Ny
\ / Other Files |

B 1 iy

Execution Engine

VM JRE

Output

Operating System (Windows, Linux, Mac, etc ...}

oW
otlin
rograms

orke

] Install Java JDK and JRE

Kotlin Software Installing IntelliJ IDEA
Prerequisites fepierel)

D Installing Android Studio

Creating Your First
Kotlin Project using
Android Studio o

» Launch Android Studio Android Studio
» Start a new Android Studio Project version 36

< Start a new Android Studio project

& Open an existing Android Studio project
' Check out project from Version Control ¥
E Profile or debug APK

L4 Import project (Gradle; Eclipse ADT, etc)

¥ Import an Android code sample

* Configure ¥ Get Help «
g P

Select a Project
Template

» Select ‘Empty Activity’

@ Create New Project

Q Select a Project Template

Phone and Tablet Wear 05

Mo Activity

Empty Activity

Creates a new empty activity

v Automotive Android Things

Basic Activity

L

Empty Activity Bottom Navigation Activity

Cancel

Configure Your

P . T
r OJ e C M Create New Project
Q Configure Your Project

Name: Kotlin First Project
Package name: -
com.example.kotlinfirstproject
Save location:

c:\android\KoflinFirstProject

Language: Kotlin
Minimum SDK: API 16

4 File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help Kotlin First Project [C:\andreid\KotlinFirstProject] - ..\app'\srcimain'java\ com'exam ple\kotlinfirstproject\MainActivity kt - Android Studio e *
& KotlinFirstProject = app src main java com example kotlinfirstproject € MainActivity ~ o app ¥ ,'2 Galaxy Nexus APl 27 = | 2 = 3 e/} f}. | N Ca| 4 (9% r’q, Q
5 « Android ¥ @D = s — s activity_mainxml £ MainActivity kt -
= e v v 2
2 - app 1 I::ackage com.example.kotlinfirstproject X
E manifests = "
g ; “
E] Jjava
é com.example kotlinfirstproject 3 impor‘t P
i & MainActivity 5

com.example.kotlinfirstproject (androidTest)

Ei o S A S) 5 wsy Class MainActivity : AppCompatActivity() {
= = res 7
Q> ¥ Gracie Sciots g ®f override fun onCreate(savedInstanceState: Bundle?) {
9 super.onCreate(savedInstanceState)
1@ setContentView(R.layout.activity_main)
11 }
g2 }
. 13
§
=

New Project Created

YOU ARE NOW READY TO CODE!

@M File Edit View Navigate Code Analyze Refactor Build Run Tools VCS Window Help Kotlin

C | . K | | .
= KotfinFirstProject 17 app W src [0 main [java [0 com [0 example [0 kotiinfirstproject i MainActivity
5 & Android ¥ D = & — & activitymainml G MainActivity.kt
3 = 2
5 < app 1 package com.example.kotlinfi
Z manifests = °
g 2 L

Jjava
K " comexample sasiaseaioa 2 imnart
.. G MainActi
com.example Link C++ Project with Gradle Kotlin File/Class
bl .
: . [comexample 8¢ cyp Cirl4x | '8 Andr
» A Kotlin program consists of @ :
@ Gradle Scripts Sample Data Directc
G " Copy Path Ctr+Shift+C it

4 File
Copy Reference Ctrf+Alt+Shift+C

group of classes; each file
performs a part of the Kotlin
program.

°
+Alt+Shift+
n Paste Ctel+V & Scratch File Ctri+Alt+Shift+insert

Package

MNew Kotlin File/Class

To create a Kotlin file

4 Greeting|

@y Class

» Right-click package > New > Kotlin
File/Class

» Name: Greeting

't Interface

» Type: File fy Enum dass

¢ Object

e activity_mainxml G MainActivity.kt & Greetingkt

| 3 . K -|- | .
1 package com.example.kotlinfirstproject
| ro g rO I I I 3 B | fun main(args: Array<String>) { B e conitt Ao P—

)

4 println("Hello World!") Copy Reference Crl+Alt+Shift+C
5 } [1 paste Ctri+V
Paste from Histary... Carl+Shift+V

Paste without Formatting Ctrl+Alt +Shift+V

» Type the code to display “Hello Comn S hte_ ossit o

Find Usages. Alt+F7

W |d I " Eind Sample Code Alt4F8
oria! K »

Folding »

o c c Analyze »

» Right-click file > Run... :
Generate. Alt+insert

Debug 'com.examplekotiinfi..’

» “Hello World!” message should be
displayed in the output console

T, Run 'com.example.kotlinfi.. with Coyverage

Android ¥ @ = B — | g activity. mainaml & MainActivity.kt & Greetingkt
% app 1 package com.example.kotlinfirstproject
manifests .
Jjava <
com.examplekotiinfirstproject 3 P | fun main(args: Array<String>) {
i Crecting kt 4 printin("Hello World!")
% MainActivity =
com.examplekotlinfirstproject | Test)) }I

com.examplekotlinfirstproject (tes
" res

¥ Gradle Scripts.

Witlilale
Comments

» Line Comments
» Block Comments

K_Greeting.k‘t

i §

M

(FF]

(94

9]

package com.example.kotlinfirstproject

/:-i:
* This is block comments.

* It's use to display multiple Lines of comments
*2

// This is a Line comments

fun main(args: Array<String>) {
println(“Hello World!")

Koftlin
Variables

» Mutable Variables

» Value can be
changed/updated
anytime

» Use the var keyword
» Immutable Variables

» Value cannot be
changed, like a
constant

» Use the val keyword

S

fun main(args: Array<String>) {

println("Hello World!'

// mutable variable
var name = "John"

// immutable variable
val age = 19

println(name + " is "

")

+ age + " years old")

Kotlin Data
Types

Niflgle]
» Use double-quotes

» Used to store words or
sentences

Character
» Use single-quote

» Used to store a single
character

Boolean
» True or False
Numbers — next slides

b3
= ®

-2

2

fun main(args: Array<String>

printin("Hello World!"™)

// string
val name = "John Smith"

// character
val gender = "M’

// boolean
val overtime = true

Kotlin Numbers

Byte 8-bits signed integer 0
Short 1 6-bits signed integer 0
Int 32-bits signed integer 0
Long 64-bits signed integer OL
Float 32-bits floating point number 0.0F

Double 64-bits floating point number 0.0

Kotlin Array

An array is used to store a
group of values, all of which
have the same data type.

Its length/size is fixed.
Cannot be resized.

To create an array, use the
function arrayOf|()

Array has index.

To access elements in an
array, use the index value.

w

oy
(0)]

-3
(84]

[
[Vs]

fun main(args: Array<String>) {

// create an array of 5 numbers
val numbers = arrayOof(1, 2, 3, 4, 5)

// access the first element in array

println("First element: + numbers[@])

// access the last element in array

println("Last element:

+ numbers[numbers-1])

Data Type
Conversions

In some cases you may need to convert a data
type for a variable to another data type such as
changing an integer to a short.

List of functions available;
» toByte()

toShort()

tolnt()

fe]Kelgle])!

toFloat()

toDouble()

toChar()

toString()

[

w

B

@ W 00 N o wun

| 2

fun main(args:

val
val
val
val

numl ;
numz2 :
num3 :

strNum :

Array<String>) {

Int = 99

Short = numl.toShort()
Byte = numl.toByte()
String = numl.toString()

|npu-|- Of 3 P [fun main(args: Array<String>) {

.f ° 4 PriftLh{ " ===s=s=s=s=s===oc—c—==—oce—o———c=o=c—™)
| n Orm O -l-l O n -l-O 5 println("Welcome to Android ATC")
o 6 praftlal ==========s===s=====c===c=ccc=—======")
Ko-l-l I n PrOgrO m 7 println("Enter Your Name : ")
8 var name = readlLine()
9 printiln("Enter Your Age : ")
» The readLline() function Wl g€ = reaakine() _ _
11 println("Thank you, your name is $name and age is $age")
allows the program user 12
to enter a string values 13 S
14 printin("Welcome to Android ATC Calculator")

or intercept keyboard
inpUT from the console. 16 printin(“Enter First Number : ")

var numberl : Int = Integer.valueOf(readLine().toString())

15 pr‘inth("=====================================")

18 println("Enter Second Number : ")

9 var number2 : Int = Integer.valueOf(readLine().toString())
20 printin("Add : " + (numberl + number2))

21 println("Sub : " + (numberl - number2))

2 printin("Mul : " + (numberl * number2))
23 printin("Div : " + (numberl / number2))
4

Mathematical W i
Operations

PPN "=====================================""))
println(“Welcome to Android ATC Calculator™)
ey R e e e e]

()BT |

~

println("Enter First Number : ")
var numberl : Int = Integer.valueOf(readLine().toString())
println{“Enter Second Number : ")

co

0

var number2 : Int = Integer.valueOf(readLine().toString())

iy
©

=
iy

» Alternatively, use the
mathematical functions
instead of operator

// use function instead of operator
3 println(“"Add : + numberl.plus(number2))

[
[]

ey
F

println(“Sub : numberl.minus(number))

=y
U

3
println("Mul : + numberl.times(number2))
println("Div : + numberl.div(number2))

L
(2]

iy
[v1]

// alternatively
println("Add : ${numberl.plus(number2)}")
println("Sub : ${numberl - number2}")

L0s]

N =
B, ®

%]
N

// another alternative

N
w

println("Enter another two numbers : ")

(]
=~

var first = readLine()!!.toInt()
25 var second = readLine()
26 println(“User inputs : $first $second”)

Conftrol Flow Statements

LESSON 2

Intfroduction

» The statements inside the program
generally executed from top to
bofttom.

Control Flow Statements allows the
execution to be broken by

applying decision making, iteration,

branching or conditionally execute
a partial part of the program.

e

Equal to

Not Equal to

Less Than

Less Than or Equal o
Greater Than

Greater Than or
Equal to

Katlin code

If the condition is false

If the condition is true E = .. EFsé COdE | f_ E | S e
e Statement

continue running the Kotlin code

co

\O

(1%]

L

wl

00 =~

D

[

(%]
(W]

)
b

(%]
=]

3 P [fun main(args: Array<String>) {
var x = 10
if (x > 30) {
println("$x is greater than 30")
} else {
println("$x is not greater than 30")

¥
println("the end")

var score: Int = 75

f-Else-If

var grade: String? = null // nullable variable

4§ asaie: = BH ek <8 Statement

else if (score >= 80) grade = "B"

else if (score >= 70) grade = "C"
else if (score >= 50) grade = "D"

else grade = "F"

println("Score : $score, Grade : $grade")

If-Else and Logical Operator

True True True True
True False False True
False True False True

False False False False

| 2

fun main(args: Array<String»>) {
// Llogical operator
var age = 16
var year = 1998

// && and operator
if (age >= 18 && year »>= 1998) println("Authorized")
else println("Not authorized")

// || or operator
if (age »>= 18 || year >= 1998) println("Authorized")
else println("Not authorized")

f-Else
and
Logical

Operator

>

fun main(args: Array<String>) {
// when statement
println("===== Pizza Order =====")
println("Enter the Pizza size: 1=> Small, 2=>Medium, 3=>Large")
var size = readLine()!!.toInt()
var price: Int? = null

when (size) { // check for equality only
1 =3 {
price = 5
println("Size: Small")
}
2 -> price =7
3 -> price = 9

else -> printin("Invalid pizza size")
}
if (price != null) {

printin("Total price: $price")

When

Statements

S

fun main(args: Array<String>) {

// for Loop

for (x in ©..5) { // x is a number range @-5
println(x)

}

println("Enter upper : ")
var upper = readLine()!!.toInt()

for (x in 1..upper) {
println(x)

var numbers: IntArray = intArrayOf(1e, 20, 30, 40, 50, 60)
for (index in @..numbers.size - 1) {
println(numbers[index])

For Loops

oo

| 2

fun main(args: Array<String>) {
var numbers: IntArray = intArrayOf(1e, 20, 30, 40, 50, 690)

// while Loop
var y =@ // 1. initialization

while (y <= 5) { // 2. expression (checking)
println(y)
y++ // 3. very important - update y
}

var index = ©
while (index < numbers.size) {

println(numbers[index])

index++

| 2

fun main(args: Array<String»>) {
var numbers: IntArray = intArrayOf(1©, 20, 30, 40, 50, 60)

// do-while Loop

var y = © // 1. initialization
do {

println(y)

y++ // 2. update

} while (y <= 5) // 3. expression
var index = @
do {

println(numbers[index])

index++

} while (index < numbers.size)

Do-While

LOOPS

Branching
Statements

» Break

» Exit from the current
block

» Continue

» Continue with the next
iteration

» Return — next lesson

[#4]

=
R ® W

w M

[V

=
w oo ~J

J = ®

[¥] 8] N ;] | o
"

w

fun main(args: Array<String>) {
var numbers: IntArray = intArrayOf(l1e, 20, 30, 40, 50, 68)

// break - exit from current block
for (index in @..numbers.size - 1) {
if (numbers[index] == 38) {
printin("Found 3@")

break
;

println(numbers[index])

}

// continue - skip current but continue with next iteration
for (index in @..numbers.size - 1) {
if (numbers[index] == 3@) {
printin("Found 3@")
continue

3

println(numbers[index])

Functions and OOP

LESSON 3

Functions

A function is a block of codes or
collection of statements grouped
together to perform an operation.

Function removes the need to
duplicate codes.

Function Name Argument List

J

fun main(;rgs: Array<String>) {

printin("Hello Android ATC")

| }

Function Body

Function

Structure

Creating a
Function

3 P [fun main(args: Array<String>) {
4 val country = "Malaysia™ // local scope
5 println("Country (main): $country")

If you have a number of

lines of codes that need to 7 // call the function greet

be used more than once q greet()

within your program, you ;

can gather them inside a }

function which has a

specific name and then call // define a function to display greeting

it, as many times as
needed.

fun greet() {
println("Good Afternoon™)

[T ™ TR = T =
s W N R ® L

=
¥
—

The function greet() is the
most basic form of function,
since it does not take any
parameter (input) and does
not return anything (output).

9]]

[v1)

0

fun main(args: Array<String>) {
// call function and pass a parameter
greetUser(name: "John")

// call function addition and pass 2 number
addition(numil: 23, num2: 76)

// define a function that takes a parameter
fun greetUser(name: String) { // parameter also lLocal scope
println("Hello $name")

// define a function to do addition, takes 2 numbers as input
fun addition(numl: Int, num2: Int) {

var total: Int = numl + num2

println("Total : $total")

Function that

takes
parameter|(s)

fun main(args: Array<String») {
// call function multiple and get return value
var result = multiply(numil: 4, num2:5)
println("Result : $result")

result = division(numi: 40, num2:5)
println(“"Result : $result")

// define a function that takes 2 parameters and return a value
fun multiply(numl: Int, num2: Int): Int {

var total: Int = numl * num2

return total

fun division(numl: Int, num2: Int): Int {
return numl / num2

Function
that

returns

Function and
\elglelell=
Scopes

» Global Variable

» Defined outside any
function

» Accessible within the
program

» Local Variable
» Defined inside function

» Function parameter
also local

» Accessible within
function only

val my_company = "Nichicon" // global scope

fun main(args: Array<String>) {
val country = "Malaysia” // Local scope
println("Country (main): $country™)

println("Company (main): $my_company") // global variable
b

fun greet() {

println("Good Afternoon")

println("Company (greet): $my_company™)
/7 println("Country (greet): fcountry”) // error
}

Object-Oriented
Programming
(OOP)

» Class

» A blueprint or
template that defines
the structure of the
object

» Object
» Aninstance of a class

» Object have
properties and
behaviours

Class

Blueprin

&
T A A

// class definition with a default constructor that takes 3 parameters
class Car(type: String, maxspeed: Int, number_of seats: Int) {

°
fun main(args: Array<String>) { < re O -|-I I I g

// create object Car
var mycar = Car(type: "van", maxspeed: 180, number_of seats: 19)

B e - a Class

A VERY BASIC CLASS
DEFINITION

Better Class
Definition

» A proper class definition should
consists of

» List of fields/properties
» Constructor(s)
» Functions

» To create new object from the
class, use the constructor.

class Car {

var type: String? = null
var maxspeed: Int? = null
var number_of_seats: Int? = null

constructor(type: String, maxspeed: Int, number of seats: Int) {

this.type = type
this.maxspeed = maxspeed

this.number of seats = number of seats

display()

fun display(){
println("Type: ${this.type}")

println("Max speed: ${this.maxspeed}")
println("No of seats: ${this.number of seats}")

main{args: Array<String>) {
// creagte object car

var mycar = Car{ type: "van", maxspeed: 18e,

var yourcar = Car(type: "Sedan”,
yourcar.display()

maxspeed: 260,

number_of_seats: 1@)

number_of_seats: 5)

Inherifance

Person

An “is-a” relationship
between 2 classes

» Superclass/Parent

» Subclasses/Children T
Superclass usually is a w playFootball()
more generic type.

MathTeacher Footballer Businessman

Subclass is more of a
specific type.

// parent class (superclass)
// 1. open class of extension (inheritance)
5 // 3. update class to contain primary constructor ()

P -|- o @ open class Person() {
Oren var Name: String? = null
8 var Email: String? = null

ClOSS var Age: Int? = null

// 4. call primary constructor from this secondary constructor

) 12 i add this() at the end of constructor definition
> Inthis exomple, Person 13 constructor(Name: String, Email: String, Age: Int) : this() {
class contains 14 this.Name = Name
15 this.Email = Email

» 3 fields

this.Age = Age

» 2 constructors 17 printin("Name:
18 println("Email: " + this.Email)

+ this.Name)

println("Age: " + this.Age)

22 // overloading 1 - call primary constructor
constructor(Name: String, Email: Sstring) : this() {

24 this.Name = Name

25 this.Email = Email

26 println("Name: " + this.Name)

printin("college: " + this.Email)

(g

(0¥

// child class (subclass)

// subclass will have the same set of properties, functions
// 2. Teacher class extends (:) Person class

L
[y}

s Person() - calling the primary constructor
class Teacher() : Person()

L L Lad

020 =

Child Class

B fun main(args: Array<String>) {
var person = Person()
person.Name = "John Smith"
person.Email = "john@example.com"

person.Age = 20
println("Name:

+ person.Name)
printin("Email: " + person.Email)

printin("Age: " + person.Age)
var otherPerson = Person(Name: "Bob Taylor"”, Email: "bob@example.com", Age: 19)

var theTeacher = Teacher()

°
theTeacher.Name = "Sarah White” M O I I I

theTeacher.Email = "Third”

theTeacher.Age = 4@

printin("Name: "

°
+ theTeacher.Name)
printin("Email: " + theTeacher.Email) ‘ ’ I I(: IO I

println("Age: " + theTeacher.Age)

// create object using overloaded 1
var studi = Person(Name: "Lily Thomas", Email "lily@example.com")

// create object using overloaded 2

var stud2 = Person(Name: "James Bond")
stud2.Age = 37

printin(stud2.Name + " age is " + stud2.Age)

// parent class (superclass)
// 1. open class of extension (inheritance)

5 // 3. update class to contain primary constructor ()

Overloading ¢ open class Person() {
Constructors

var Name: String? = null
8 var Email: String? = null
var Age: Int? = null

// 4. call primary constructor from this secondary constructor

\ 12 i add this() at the end of constructor definition
» Functions that have 13 constructor(Name: String, Email: String, Age: Int) : this() {
the same name but 14 this.Name = Name
different parameter 15 this.Email = Email
list. 16 this.Age = Age
17 printin("Name: " + this.Name)

Defined within the 18 println("Email: " + this.Email)
same class. println("Age: " + this.Age)

22 // overloading 1 - call primary constructor
constructor(Name: String, Email: Sstring) : this() {

24 this.Name = Name

25 this.Email = Email

26 println("Name: " + this.Name)

printin("college: " + this.Email)

Overriding
Properties
and Functions

» Subclass(es) override
Superclass’s properties
and functions.

Overriding functions
requires that the
methods have the
SAME name and
parameter list.

// open class of extension

open class Computer {

¥

// open properties for overriding
open var x: Int = 5
open var y: Int = 11

open fun display(){

println(”Computer x : " + this.x + ", y : "

}

class Tablet : Computer() {

fun

// override superclass’'s properties
override var x | Int = 2

override var y ! Int = 4

var z : Int = 7

override fun display() {

printin(”Tablet x : " + this.x + ", y : "

}

main{args: Array<String») {
var compl = Computer()
compl.display() // display() in Computer

var tabl = Tablet()
tabi.display() // display() in Tablet

+ this.y)

+ this.y + "

k]

% 3 i

+ this.z)

Abstract Class

A class that contains at least
one abstract function.

An abstract function is a
function without
implementation i.e. no
function body.

An abstract class cannot be
instantiated.

// abstract method is a method without body (implementation)

// if class contains at least 1 abstract method -> class is abstract
// cannot create object from abstract class

// abstract class can contain non-abstract method

abstract class Course {
var title: String? = null
var code: String? = null

abstract fun courseprice()
abstract fun courseprerequisite()

fun display() {
println("Title: " + title)
println("Code: " + code)

Inherit from
Abstract Class

Extends the abstract
class in order to provide
the implementation of
the abstract function.

If the subclass is not
abstract, then it can be
instantiated.

ti L)

i; L)

class ComputerCourse() : Course() {

override fun courseprice() {

}

printin("Computer course price”)

override fun courseprerequisite() {

}

¥

printin("Computer course pre-requisite”)

class EngineeringCourse() : Course() {

override fun courseprice() {

}

println("Engineering course price")

override fun courseprerequisite() {

}

printin("Engineering course pre-requisite”)

> fun main(args: Array<String>) {
A4 P var coursel = Course() [/ error
var compCourse = ComputerCourse()

46 compCourse.title = "Kotlin Programming"

A7 compCourse.code = "KOTLIN" TeS'I'

48 compCourse.display()

49 compCourse.courseprice()

compCourse.courseprerequisite() AbSTrO C-|-

52 var engCourse = EngineeringCourse() (|OSS
53 engCourse.title = "Electronics”
; engCourse.code = "ELEC”

engCourse.display()

56 engCourse.courseprice()
57 engCourse.courseprerequisite()

Interface

An interface is a type of
class/structure that contains
abstract functions only.

Cannot instantiate from an
intferface.

Allow multiple-inheritance.

®]

!

@

J

interface Calc {

}

fun sum(x: Int, y: Int)

fun display() {

printin{"x : $x, y :

}

interface Printable {

}

fun print()

g

Interface
Implementations

>

Create class(es) that
implements the
interface.

If class is not abstract,
can be instantiated.

25 of

1 of

// define a class that implements interface
// Mathl implements 2 interfaces (multiple inheritance)
class Mathl : calc, Printable {
override fun sum(x: Int, y: Int) {
printin("sum is " + (x + y))

}

override fun print() {
printin("Mathl print function™)
}
b

class Math2 : calc {
override fun sum(x: Int, y: Int) {
println("sum is " + x.plus(y))
H
¥

fun main(args: Array<String>) ﬂ
var ml = Mathi()
mi.sum(x 23, Yy 45)
mi.display()

var m2 = Math2()
m2.sum(x 23, Y 45)

Generic Class

» A generic class allows a
single function to handle

many different types of data.

» Help reduces code
duplications.

(17, [S B

3 face] (] [o'a] L] o

// non-generic class
class Permission {

var username: String?

var password: String?

// generic class

class GenPermission<T> {
var username: T? = null
var password: T? = null

null
null

> fun main(args: Array<string>) {
var perml = Permission()
perml.username = "William"

perml.password = "abc123"

[]
var genperml = GenPermission<Int>() G e n e rl (

genperml.username = 123

genperml.password = 456 C | O SS

var genperm2 = GenPermission<String>()

genperm?.username = "Bob"

genperm2.password = "password” U S O g e

var genperm3 = GenPermission<Boolean>()

genperm3.username = true

genperm3.password = false

Enum Class

// enum class is a type that contain predefined set of values

enum class Colleges(desc: String) {
ITCollege(desc: "IT College"),
BusinessCollege(desc: "Business College"),
8 ArtscCollege(desc: "Arts College"),

» Anenum classis @ ..
special data type that :
enObIeS a VOriGble TO enummzi::;,njiisiay, Wednesday, Thursday, Friday, Saturday, Sunday
be a set of predefined - W
constants. Tl i oiiores: Array<strinesS

// define a variable of type enum

EngineeringCollege(desc: "Engineering College™)

var major = Colleges.ArtsCollege
println("Major: $major")

21 var today = Days.Monday
22 println("Today is $today")

Class
Variables

Also known as
companion object.

The variables belongs to
the class instead of
object.

To access class
variables, prefix with the
class name.

// class variable - variable belongs to class its
// use companion object block to define class variable

class Game {
companion object {
val gamesPlayed = 10

¥

var id: Int? = null

¥

fun main(args: Array<string>) {
var gamel = Game()
gamel.id = 1

var game2 = Game()
game2.id = 2

// access class variable via class name
printin("Total games played: " + Game.gamesPlayed)

3 ® open class Employee {
4 protected var id: Int? = null
var name: String? = null

Access var email: String? = null
MOdifierS 7 var salary: Double? = null

| open fun display() {

> Public println("$id $name $email $salary™)

» Default, accessible from 11 }
all classes. 12 }

» Private 13
A class Programmer : Employee() {

» Accessible within the
same class only.

private var project : String? = null
> Profected 17 ®f override fun display() {

» Private but accessible by 18 println("$id $name $email $salary $project”)
subclass(es). 19 }

Koftlin
Collections -
HashMap

» An associative array, use key-

value paring.

Key must be unique and
point to one value only.

Basic functions;
» pui()
» gef()

> »

fun main(args: Array<String>
. (=]

//

// create a hashmap
var myHashMap = HashMap<String,

myHashMap.put("first", "One")
myHashMap.put("second", "Two")

string>()

myHashMap.put (3, "Three") // error

myHashMap.put("second”, "TWO")

println(myHashMap.get("first"))
println(myHashMap.get("second"))

for (key in myHashMap.keys){
println(myHashMap.get(key))

// overwrite previous value

3 b fun main(args: Array<String>) {

4 // create a list to store int numbers
var numList = ArrayList<Int>()
numlist.add(12)

Koftlin Collections i s
- ArrayList t |)

Fid numList.add("test") // error

println("size: " + numlList.size)
12 println("First item: " + numlList.get(©))

> A dyﬂOmiC OrrOy. 1 for (num in numlist) {
] 15 printin(num)
» Automatically extends and }
shrinks. |
18 numList.remove(element: 12)

> CCIH be reSized println("size: " + numList.size)

20 println("First item: " + numList.get(@))

// immutable Llist
23 var ilist = listof(1, "Android", 500)
24 oy iList[ef] = 2 // error
25 printin(iList[e]) // ok

27 // mutable list

28 var mList = mutablelListof(1, "Android”, 50@)
2 mList[e] = 2 // ok

g println(mList[e])

3 b fun main(args: Array<string>) {

// create a List to store int numbers
var numList = ArrayList<Int>()
numlist.add(12)
numList.add(34)
numlist.add(12)

Aol numList.add("test"”) // error

println("size: " + numList.size)

println("First item: " + numList.get(@))

for (num in numlist) {
println(num)

numList.remove(element: 12) M e -l- h O d

println("size: " + numList.size)

println("First item: " + numList.get(e)) mU-I-ObleLiS-I-Of

// immutable Llist

var ilist = listO0f(1, "Android”, 500)
iy iList[e] = 2 // error

println(iList[e]) // ok

// mutable Llist

var mList = mutablelistof(1l, "Android”, 5600)
miistfe] =2 // ok

printin(mList[e])

Android Framework and Android
Studio

LESSON 4

Android

Platform
Architecture

L

Linux Kernel

Hardware Abstraction Layer (HAL)

Android Runtime (ART)

Native C/C++ Libraries

Java APl Framework

System Apps

Android Libraries

Components of Android Applications

ACTIVITIES VIEWS SERVICES CONTENT INTENT BROADCAST NOTIFICATIONS
PROVIDERS RECEIVERS

Activity
launched

onCreate()
onStart() - onRestart()
‘ A
User navigates onResume()

to the activity

= L. immum

N

| Appprocess |

Activity
\ killed ' running /
\ / « J

1
Another activity comes

° []
to the fi round I I
WO RIS ecgRoun User retums /\ |ICO-I-IO
v to the activity
Apps with higher priority | onPause() —
Life Cyc le

need memory
I

The activity is
no longer visible

User navigates
+ to the activity

)

onStop()

|
The activity is finishing or
being destroyed by the system

v

onDestroy()

Types of Android Processes and
Their Priorities

Foreground

Visible

Service

Background

Empty

Applications with components currently High
interaction with users. Android will keep this
process responsive.

Visible, but inactive and responding to user Medium
events.

Processes hosting services that have been Low
started, ongoing services without a visible
interface.

Aren't visible and has services that hasn't
started.

Does not hold any active application
component.

|:| Android SDK

Integrated Environment Development

Android (IDE)

Application
Development Android Studio

3 Gradle

D Create Your First Android
Application

Lab 4;

Creating Your
First
Application

Create an Android Device

E Build a Simple Calculator
Application

Creating User Interface

LESSON &

Anaroid
o
Structure
rcroaano

All user interface elements in an Android application
are built using View and ViewGroup objects.

View is the based class for widgets, which are used
fo create interactive user inferface components
(buttons, text fields, etc)

All of the views in a window are arranged in a single
free map.

Can be added programmatically or by using the
designer.

Creating a User Interface

Add a text box. Add an image.

Add a check box. Add a radio button.

Create Your Application
User Interface

<>

Nole) =
Creating o

Configure the Android
Application Code

Pizza Order
Application

_Z“’ Run Your Application

Android Layouts, Styles, Themes
and Menus

LESSON 6

Constraint Layout

Linear Layout
Relative Layout
able Layou

ime Layou

Android Styles and Themes

Android SDK allows
developers to create the
user interface style of their
applications using XML
resource files.

However, when the same
style is applied on the
whole activity or
application it is called a
theme.

When a resource is used to
define the style of a certain
view it is called a style.

GE]

Android 8.0 (API 26) infroduces adaptive launcher
icons, which can display a variety of shapes across
different device models.

For example, an adaptive launcher icon can display
a circular shape on one OEM device, and display a

Ad d pﬂ\/e square on another device.
lcons

screen.

E/ Create Your Application
= Layout

Lab é6: Android

Application Configure Your Styles and
Layouts, Styles Themes
and Themes

“ Configure Your App Icon

Toasts, Activities, Navigations and

Views
LESSON 7

... Contextis an abstract class
18): (model) thatis provided by
""" Android SDK.

Context class contains

Context Class information about activity or
application.

.ﬂ FU nc-l-lons -I-O ge-l- getApplicationContext()

getBaseContext()

-‘ con TeXT, this keyword

Toast Class

Toast is a public class that is displayed to show a quick brief
message to the user.

A toast provide a simple feedback about an operation in
a small group.

It only fills the amount of space required for the message
while the current activity remains visible and interactive.

Toasts automatically disappear after a timeout.

LENGTH_LONG: 3.5 seconds

Toast duration constants; LENGTH_SHORT: 2 seconds

What is an Activitye

An activity is an entry point for
interacting with the user.

The apps consists of one or more
activities, and the user can
navigate between them
through buttons, menus, images,
back button and other
navigation tools.

It represents a single screen with
a user interface.

An activity in Android apps can
be configured to be the main
activity by configuring the
AndroidManifest.xml file.

ACTIVIty
Lifecycle

» To navigate fransitions between stages of
the activity lifecycle, the Activity class
provides a core set of six callbacks:

onCreate(),
onStart(),
onResume(),
onPause(),
onStop(),

» and onDestroy().

» The system invokes each of these
callbacks as an activity enters a new
state.

Activity
 launched

onCreate()

v

onStart() B — onRestart()

‘ A

onResume() -

User navigates
to the activity

4 R s ™

| Appprocess | (Activity '\

\ killed) \ running /
—

Another activity comes

nto the foreground
User returns

" to the activity

Apps with higher priority
need memory onPause()
I

The activity is
no longer visible

User navigates
‘ to the activity

)

onStop()

I
The activity is finishing or
being destroyed by the system

v

onDestroy()

Lifecycle Callbacks — onCreate()

You must implement this callback,
which fires when the system first
creates the activity.

For example, your implementation of
onCreate() might bind data to lists,
associate the activity with a
ViewModel, and instantiate some
class-scope variables.

In the onCreate() method, you
perform basic application starfup
logic that should happen only once
for the entire life of the activity.

This method receives the parameter
savedInstanceState, which is a
Bundle object containing the
activity's previously saved state. If the
activity has never existed before, the
value of the Bundle object is null.

Lifecycle

Callbacks —
onStart()

When the activity enters the Started state, the
system invokes this callback.

The onStart() call makes the activity visible to
the user, as the app prepares for the activity to
enter the foreground and become interactive.

For example, this method is where the app
initializes the code that maintains the Ul.

When the activity enters the
Resumed state, it comes to
the foreground, and then
the system invokes the
onResume() callback.

The app stays in this state
until something happens to
take focus away from the

app.

5

Lifecycle Callbacks — onResume()

This is the state in which the
app interacts with the user.

Such an event might be, for
instance, receiving a phone
call, the user’s navigating to
another activity, or the
device screen’s turning off.

The system calls this method as the
first indication that the user is
leaving your activity (though it
does not always mean the activity
is being destroyed).

Use the onPause() method to
pause or adjust operations that
should not continue (or should
continue in moderation) while the
Activity is in the Paused state, and
that you expect to resume shortly.

Lifecycle Callbacks — onPause()

It indicates that the activity is no
longer in the foreground (though it
may still be visible if the useris in
multi-window mode).

There are several reasons why an
activity may enter this state. For
example: Some event interrupts
app execution, as described in the
onResume() section. This is the
most common case.

Lifecycle Callbacks — onStop()

When your activity is no longer visible to the user, it has entered the Stopped state, and the
system invokes the onStop() callback.

The system may also call onStop() when the activity has finished running and is about to be
terminated.

Lifecycle

Callbacks —
onDestroy()

The system invokes this callback either
because:

the activity is finishing (due to the the system is temporarily destroying

user completely dismissing the the activity due to a configuration

activity or due to finish() being change (such as device rotation or
called on the activity), or multi-window mode)

Android Intent

An Intent is an object that provides
runtime binding between separate
components, such as two activities.

You can use intents for a wide
variety of tasks, but in this lesson,
your intent starts another activity.

Intfent Structures

Action Data
The general action to be performed, The data to operate on, such as a
such as ACTION_VIEW, ACTION_EDIT, person record in the contacts database,

ACTION_MAIN, eftc. expressed as a Uri.

Intfent Structures

o ==

Category Type

Gives additional information about the Specifies an explicit type (a MIME type)
action to execute. For example, of the intent data.
CATEGORY_LAUNCHER means it should
appear in the Launcher as a top-level
application.

Intfent Structures

Component Extras

Specifies an explicit name of a This is a Bundle of any additional
component class to use for the intent. information. This can be used to provide
extended information to the component

Intent Resolution

Explicit Intents

have specified a component (via
setComponent(ComponentName) or
setClass(Context, Class)), which provides
the exact class to be run.

Implicit Intents

have not specified a component;
instead, they must include enough
information for the system to determine
which of the available components is
best to run for that intent.

Normally, when you run your Android app, the main activity
will appear as Main Activity.

By default, the main activity’s name is MainActivity and its
name is configured within AndroidManifest.xml file to
startup first.

Navigating

Between
Activities

buttons, images, and others to browse or navigate your
app which is usually consists or more than one activity.

the AppCompatActivity class.

Passing Data Between Activity

It is very likely that you
want to transfer some data
to the activity you want to
start through Intent.

To add data to extras use
the putExtra() function.

Android SDK provides this
option by using extras
methods.

To get/read data from
extras use the getExira()
function.

Android Views

This class represents the basic
building block for user interface
components.

All of the views in a window are
arranged in a single free.

ListView is a view group that displays a list
of scrollable items.

List View

Adapter will convert each item result into
a view that is placed into the list.

Lab 7:

Configuring
Android
RecyclerView

Adding a RecyclerView to an Activity

Creating a CardView

Creating Your RecyclerView Adapter

Adding Data to Your RecyclerView

Running and Testing Your RecyclerView

Adding Event Listeners to Each RecyclerView Row

Android Dialogs, Snackbar, Menus,
WebView and Notifications

LESSON 8

A dialog is a small window that
prompts the user to make a
decision, enter additional

: information or give a feedback.
Android

Dialogs

Dialog Sub-

Classes

AlertDialog

ProgressBar

SeekBar

Menus are common Ul components
used to provide user actions and
other opftions in your activities.

Each activity in an application can
get its own options-menu.

The user can access the options
menu from the action bar by pressing
on the three dots icon.

D You can embed a web browser inside

your application using web views.

WebView

Android

Nelililefelile]al

A noftification is a message you display to the
user outside of you're app’s regular user
interface.

When your app sends a notification to the
Android OS, the notification manager service
(Android service) receives your app notification
and issues it.

The nofification appears first as an icon in the
noftification area.

To the details of the nofification, the user should
open the notification drawer.

Both noftification area and drawer are system-
controlled areas that the user can view at any
time.

» |nsupported launchers and on devices running
Android 8.0 (APl level 26) and higher;

An d rO | d » Apps can display noftification badges on app

icons.

N Ohf' CO Tl O ﬂS » Users can also long-press on an app icon to

glance at the notifications associated with a
notification badge.

Creating an

Android
Nelililefelile]a

A smallicon, set by setSmalllcon()

A title, set by setContentTitle()

Detail text, set by setContentText()

Notification Channel

*On Android 8.0 (APl level 26) and later versions, a valid
notification channel ID is set by setChannelld() oris
provided in the NotificationCompat.Builder constructor
when creating a channel.

*You should configure a notification channel code before
you configure noftification message, because the
configuration of the notification message needs to use
the nofification channel id which have configured first.

Noftification
Channel

Starting in Android 8.0 (APl level 26), all notifications must be
assigned to a channel.

For each channel, you can set the visual and auditory behavior that
is applied to all notifications in that channel.

no’rifi'co’rion channels from your app should be intrusive or visible at

or more notification channels.

on devices running Android 7.1 (AIIDI level 25) or lower.

Helo) <
Configuring

Android Web
Browser, Menu
and
Noftification

Configuring Android Web
Browser

Adding Android Menu

Creating a notification channel
and a notification message

Android Storage, SQLite and
Content Providers

LESSON 9

Android

Storage
Options

Shared Preferences

* This fechnique stores application-specific primitive data in key-
values pairs.

Internal Storage

* Store private data on the device memory using file I/O
technique. This data will not be accessible by other
applications.

External Storage

* Store public data on the shared external storage (such as SD
card).

« Store data on the web using your own network server.

e Store structured datain a private database on the phone.

Default directory
/data/data/APP_NAME/databases/DATABASE_
FILE

SQLiteOpenHelper

S Q Ll-l-e » Thisis a helper class to manage database
creation and version management.

DOTO bCISG Iﬂ SQLiteDatabase

» SQLiteDatabase exposes methods to manage

YO U r an SQLite database.

» It has methods to create, execute SQL
1 1 commands and perform other common
App“COTIOﬂ database management tasks.
Cursors

» The Cursor interface provides random access-
write access to the result sef returned by a
database query.

Content
Providers

]

Content Providers are one of the building
blocks of Android applications.

Usually Android applications keep the data
private and hide it from other applications.

However, sometimes you might need to share
the data with other applications.

For this purpose, content providers are mainly
used.

Should each
Android app
with SQLite

database
have a
content
provider?

You need to create a content provider
only if you want to share your application
data with other applications.

You do not need a content provider to
use SQLite database if the use occurs
completely within your application.

Creatfing @

Content
Provider

File Data

* Any file such as video, an image or an
audio.

* App stores the files in a private memory.

Structured Data

* Any databases, arrays, etc.

* Data stored compatible with tables of
rows and columns.

* SQLite database is the common way for
storing this type of data.

There is offen a need to send data to and
from a mobile device to a server.

Sync Adapfters

D Sync adapter run asynchronously.

How Sync

Adapters
Work

Sync Adapters work by
cloning data from the
server into the local
database then use it
through a
ContentProvider.

It pushes the new data
to the server and
fetches the updated
data from the server to
the mobile.

The data is access using

the ContentProvider and

all the changes made to

the data are handled by
it.

That is the job of
SyncAdapter to match
the remote data with
the local data.

Writing the ContentProvider

Steps to
create

Writing an authenticator component

SyncAdapter
framework

Creating the Sync Adapter

SUlalallale) Running the Sync Adapter

Object-Relational Mapping

ORMLite

Advantages

of ORMLite

w

3

Simple setup of classes by adding
annotations.

Easy construction of simple and
complex queries.

Support a wide variety of database
technologies.

Automatic generation of SQL to
create and drop tables.

Making native calls to Android SQLite
database APIs.

How-10

ORMLIte

@DatabaseTable
@DatabaseField

7 @DatabaseTable(tablename = "person™)

8 data class Person(

: L @DatabaseField{generatedid = trueﬂ
8 var accountId: Int? = null,
@DatabaseField

var name: String? = null

Lab 92: SQLite

Databases
and Content
Providers

Creating an SQLite database

Querying a SQLite DB table

Creating Content Provider

Utilizing ORMLite Library

Location-Aware Apps: Using GPS
and Google Maps

LESSON 10

Intfroduction

Most of the mobile application nowadays rely on user’s geolocation and web mapping services.

The GPS is considered one of the most accurate geolocation providers.

In order to increase users’ experience of location awareness, geo-coordinates should be
represented graphically which can be achieved using web-mapping services such as Google
Maps.

What is GPS
and how

does it
worke

The GPS is a navigation system based on
satellite.

The GPS coordinates depend on the latitude
and longitude values.

The connection between a GPS satellite and
the receivers (i.e. smart devices) is a one-way
connection.

The connection works through the use of a
procedure called Trilateration.

NAVSTAR is one of the mostly used satellite in all
mobile devices.

» Both Cell-ID and WI-FI can be used as location
service providers.

O-I-h er » Android SDK options;

» LocationManager.GPS_PROVIDER

LOCOTIO n » LocationManager.NETWORK_PROVIDER

1 » Determining which provider to use relies on
S crvice three criteris;

Providers > Accuracy
» Speed
» Battery consumption

Steps...

mml Configuring Google Maps

mmm Map Fragment

mmm Getfting a Google APl key

mmm Adding a Google Map Marker

md Methods to Capture a User’s Location

e Location Manager
¢ Location Listener

= Reverse Geolocation and Geocoder Class

mmm JSON and APi

Lab SkEs
Location-

Aware Apps
using the GPS
and Google
Maps

&

Creating a Search App Interface

Getting a Google APl key

Configuring Your App to Use Your APl Key

Configuring User App's Permission

Capturing Users’ Location

Finding the Nearest Restaurants to a User’'s Current
Location

THE END

9 https://feedback.iverson.com.my

lverson Online
Evaluation

Class ID;

C g}
g THANK YOU! ®

