
Android Application Development
AND-801

Course Contents

Lesson 1:
Introduction to Kotlin

Lesson 2: Control
Flow Statements

Lesson 3: Functions
and Object-

Oriented
Programming (OOP)

Lesson 4: Android
Framework and
Android Studio

Lesson 5: Creating
User Interface UI

Lesson 6: Android
Layouts, Styles,

Theme and Menus

Lesson 7: Toasts,
Activities,

Navigations, and
Views

Lesson 8: Android
Dialogs, Snackbar,
Menus, WebView
and Notifications

Lesson 9: Android
Storage, SQLite and
Content Providers

Lesson 10: Location-
Aware Apps: Using
GPS and Google

Maps

Your Trainer

Asmaliza Ahzan @ Emma asmaliza@iverson.com.my

Participants
Introduction

Name

Job Title/Description

Programming Experience(s)

Expectation(s)

Thank you! 

Introduction to Kotlin
LESSON 1

Kotlin History

July 2011, JetBrains unveiled Project Kotlin – a
new language for the JVM.
July 2011, JetBrains unveiled Project Kotlin – a
new language for the JVM.

It has been under development for a year.It has been under development for a year.

One of the stated goals of Kotlin is to compiled
as quickly as Java.
One of the stated goals of Kotlin is to compiled
as quickly as Java.

February 2012, JetBrains open-sourced the
project under the Apache 2 license.
February 2012, JetBrains open-sourced the
project under the Apache 2 license.

Kotlin is 100% interoperable with Java and
Android.
Kotlin is 100% interoperable with Java and
Android.

Kotlin
Advantages

Performance Easy to learn and
intuitive

Free integration
with Android

Studio

Interoperability
with Java Expressive Null safety

Google
announced Kotlin

as an official
language for

Android during
Google I/O 2017

How
Kotlin
Programs
Work?

Kotlin Software
Prerequisites

Install Java JDK and JRE

Installing IntelliJ IDEA
(optional)

Installing Android Studio

Creating Your First
Kotlin Project using
Android Studio
 Launch Android Studio

 Start a new Android Studio Project

Select a Project
Template

 Select ‘Empty Activity’

Configure Your
Project

 Name: Kotlin First Project

 Package name:
com.example.kotlinfirstproject

 Save location:
c:\android\KotlinFirstProject

 Language: Kotlin

 Minimum SDK: API 16

New Project Created
YOU ARE NOW READY TO CODE!

Creating a Kotlin
Program
 A Kotlin program consists of a

group of classes; each file
performs a part of the Kotlin
program.

 To create a Kotlin file

 Right-click package > New > Kotlin
File/Class

 Name: Greeting

 Type: File

Running a Kotlin
Program
 Type the code to display “Hello

World!”

 Right-click file > Run…

 “Hello World!” message should be
displayed in the output console

Writing
Comments

 Line Comments

 Block Comments

Kotlin
Variables

 Mutable Variables

 Value can be
changed/updated
anytime

 Use the var keyword

 Immutable Variables

 Value cannot be
changed, like a
constant

 Use the val keyword

Kotlin Data
Types

 String

 Use double-quotes

 Used to store words or
sentences

 Character

 Use single-quote

 Used to store a single
character

 Boolean

 True or False

 Numbers – next slides

Kotlin Numbers

Data Type Description Default Value

Byte 8-bits signed integer 0

Short 16-bits signed integer 0

Int 32-bits signed integer 0

Long 64-bits signed integer 0L

Float 32-bits floating point number 0.0F

Double 64-bits floating point number 0.0

Kotlin Array

 An array is used to store a
group of values, all of which
have the same data type.

 Its length/size is fixed.

 Cannot be resized.

 To create an array, use the
function arrayOf()

 Array has index.

 To access elements in an
array, use the index value.

Data Type
Conversions

 In some cases you may need to convert a data
type for a variable to another data type such as
changing an integer to a short.

 List of functions available;

 toByte()

 toShort()

 toInt()

 toLong()

 toFloat()

 toDouble()

 toChar()

 toString()

Input of
Information to
Kotlin Program
 The readLine() function

allows the program user
to enter a string values
or intercept keyboard
input from the console.

Mathematical
Operations

 Alternatively, use the
mathematical functions
instead of operators.

Control Flow Statements
LESSON 2

Introduction

 The statements inside the program
generally executed from top to
bottom.

 Control Flow Statements allows the
execution to be broken by
applying decision making, iteration,
branching or conditionally execute
a partial part of the program.

Operator Name

== Equal to

!= Not Equal to

< Less Than

<= Less Than or Equal to

> Greater Than

>= Greater Than or
Equal to

If-Else
Statement

If-Else-If
Statement

If-Else and Logical Operator

A B A && B A || B

True True True True

True False False True

False True False True

False False False False

If-Else
and
Logical
Operator

When
Statements

For Loops

While
Loops

Do-While
Loops

Branching
Statements

 Break

 Exit from the current
block

 Continue

 Continue with the next
iteration

 Return – next lesson

Functions and OOP
LESSON 3

Functions

A function is a block of codes or
collection of statements grouped
together to perform an operation.

Each function has a unique name
which is used to call this function
inside the Kotlin program.

Function removes the need to
duplicate codes.

Function
Structure

Creating a
Function

 If you have a number of
lines of codes that need to
be used more than once
within your program, you
can gather them inside a
function which has a
specific name and then call
it, as many times as
needed.

 The function greet() is the
most basic form of function,
since it does not take any
parameter (input) and does
not return anything (output).

Function that
takes
parameter(s)

Function
that
returns

Function and
Variable
Scopes
 Global Variable

 Defined outside any
function

 Accessible within the
program

 Local Variable

 Defined inside function

 Function parameter
also local

 Accessible within
function only

Object-Oriented
Programming
(OOP)

 Class

 A blueprint or
template that defines
the structure of the
object

 Object

 An instance of a class

 Object have
properties and
behaviours

Creating
a Class
A VERY BASIC CLASS
DEFINITION

Better Class
Definition
 A proper class definition should

consists of

 List of fields/properties

 Constructor(s)

 Functions

 To create new object from the
class, use the constructor.

Inheritance

 An “is-a” relationship
between 2 classes

 Superclass/Parent

 Subclasses/Children

 Superclass usually is a
more generic type.

 Subclass is more of a
specific type.

Parent
Class

 In this example, Person
class contains

 3 fields

 2 constructors

Child Class

Main
Function

Overloading
Constructors

 Functions that have
the same name but
different parameter
list.

 Defined within the
same class.

Overriding
Properties
and Functions
 Subclass(es) override

Superclass’s properties
and functions.

 Overriding functions
requires that the
methods have the
SAME name and
parameter list.

Abstract Class
 A class that contains at least

one abstract function.

 An abstract function is a
function without
implementation i.e. no
function body.

 An abstract class cannot be
instantiated.

Inherit from
Abstract Class

 Extends the abstract
class in order to provide
the implementation of
the abstract function.

 If the subclass is not
abstract, then it can be
instantiated.

Test
Abstract
Class

Interface

 An interface is a type of
class/structure that contains
abstract functions only.

 Cannot instantiate from an
interface.

 Allow multiple-inheritance.

Interface
Implementations

 Create class(es) that
implements the
interface.

 If class is not abstract,
can be instantiated.

Generic Class

 A generic class allows a
single function to handle
many different types of data.

 Help reduces code
duplications.

Generic
Class
Usage

Enum Class

 An enum class is a
special data type that
enables a variable to
be a set of predefined
constants.

Class
Variables

 Also known as
companion object.

 The variables belongs to
the class instead of
object.

 To access class
variables, prefix with the
class name.

Access
Modifiers
 Public

 Default, accessible from
all classes.

 Private

 Accessible within the
same class only.

 Protected

 Private but accessible by
subclass(es).

Kotlin
Collections -
HashMap
 An associative array, use key-

value paring.

 Key must be unique and
point to one value only.

 Basic functions;

 put()

 get()

Kotlin Collections
- ArrayList

 A dynamic array.

 Automatically extends and
shrinks.

 Can be resized.

Method
mutableListOf

Android Framework and Android
Studio
LESSON 4

Android
Platform
Architecture

Linux Kernel

Hardware Abstraction Layer (HAL)

Android Runtime (ART)

Native C/C++ Libraries

Java API Framework

System Apps

Android Libraries

Components of Android Applications

ACTIVITIES VIEWS SERVICES CONTENT
PROVIDERS

INTENT BROADCAST
RECEIVERS

NOTIFICATIONS

Application
Life Cycle

Types of Android Processes and
Their Priorities

Type Description Priority

Foreground Applications with components currently
interaction with users. Android will keep this
process responsive.

High

Visible Visible, but inactive and responding to user
events.

Medium

Service Processes hosting services that have been
started, ongoing services without a visible
interface.

Low

Background Aren’t visible and has services that hasn’t
started.

Low

Empty Does not hold any active application
component.

Low

Android
Application
Development

Android SDK

Integrated Environment Development
(IDE)

Android Studio

Gradle

Lab 4:
Creating Your
First
Application

Create Your First Android
Application

Create an Android Device

Build a Simple Calculator
Application

Creating User Interface
LESSON 5

Android
Project
Structure

Project nameProject name

Package namePackage name

Project locationProject location

LanguageLanguage

Minimum SDKMinimum SDK

Gradle scriptGradle script

AndroidManifest.xmlAndroidManifest.xml

View

All user interface elements in an Android application
are built using View and ViewGroup objects.

A View is a public class that draws something on the
screen that the user can interact with.

View is the based class for widgets, which are used
to create interactive user interface components
(buttons, text fields, etc)

All of the views in a window are arranged in a single
tree map.

Can be added programmatically or by using the
designer.

Creating a User Interface

Add a text box. Add an image.

Add a check box. Add a radio button.

Lab 5:
Creating a
Pizza Order
Application

Create Your Application
User Interface

Configure the Android
Application Code

Run Your Application

Android Layouts, Styles, Themes
and Menus
LESSON 6

Layouts

Constraint LayoutConstraint Layout

Linear LayoutLinear Layout

Relative LayoutRelative Layout

Table LayoutTable Layout

Frame LayoutFrame Layout

ScrollView LayoutScrollView Layout

Android Styles and Themes

Android SDK allows
developers to create the
user interface style of their
applications using XML
resource files.

Defining the style of user
interfaces involves
specifying values for colors,
fonts, dimensions, buttons,
etc.

When a resource is used to
define the style of a certain
view it is called a style.

However, when the same
style is applied on the
whole activity or
application it is called a
theme.

Adaptive
Icons

Android 8.0 (API 26) introduces adaptive launcher
icons, which can display a variety of shapes across
different device models.

Android 8.0 (API 26) introduces adaptive launcher
icons, which can display a variety of shapes across
different device models.

For example, an adaptive launcher icon can display
a circular shape on one OEM device, and display a
square on another device.

For example, an adaptive launcher icon can display
a circular shape on one OEM device, and display a
square on another device.

Each device provides a mask, which the system uses
to render all the adaptive icons of the same shape.
Each device provides a mask, which the system uses
to render all the adaptive icons of the same shape.

An adaptive launcher icon is also used in shortcuts,
settings app, sharing dialogs, and the overview
screen.

An adaptive launcher icon is also used in shortcuts,
settings app, sharing dialogs, and the overview
screen.

Lab 6: Android
Application
Layouts, Styles
and Themes

Create Your Application
Layout

Configure Your Styles and
Themes

Configure Your App Icon

Toasts, Activities, Navigations and
Views
LESSON 7

Context Class

Context is an abstract class
(model) that is provided by
Android SDK.

Context class contains
information about activity or
application.

Functions to get
context;

getApplicationContext()

getBaseContext()

this keyword

Toast Class

Toast is a public class that is displayed to show a quick brief
message to the user.

A toast provide a simple feedback about an operation in
a small group.

It only fills the amount of space required for the message
while the current activity remains visible and interactive.

Toasts automatically disappear after a timeout.

Toast duration constants;
LENGTH_LONG: 3.5 seconds

LENGTH_SHORT: 2 seconds

What is an Activity?

An activity is an entry point for
interacting with the user.

It represents a single screen with
a user interface.

The apps consists of one or more
activities, and the user can
navigate between them
through buttons, menus, images,
back button and other
navigation tools.

An activity in Android apps can
be configured to be the main
activity by configuring the
AndroidManifest.xml file.

Activity
Lifecycle

 To navigate transitions between stages of
the activity lifecycle, the Activity class
provides a core set of six callbacks:

 onCreate(),

 onStart(),

 onResume(),

 onPause(),

 onStop(),

 and onDestroy().

 The system invokes each of these
callbacks as an activity enters a new
state.

Lifecycle Callbacks – onCreate()

You must implement this callback,
which fires when the system first
creates the activity.

In the onCreate() method, you
perform basic application startup
logic that should happen only once
for the entire life of the activity.

For example, your implementation of
onCreate() might bind data to lists,
associate the activity with a
ViewModel, and instantiate some
class-scope variables.

This method receives the parameter
savedInstanceState, which is a
Bundle object containing the
activity's previously saved state. If the
activity has never existed before, the
value of the Bundle object is null.

Lifecycle
Callbacks –
onStart()

When the activity enters the Started state, the
system invokes this callback.

The onStart() call makes the activity visible to
the user, as the app prepares for the activity to
enter the foreground and become interactive.

For example, this method is where the app
initializes the code that maintains the UI.

Lifecycle Callbacks – onResume()

When the activity enters the
Resumed state, it comes to
the foreground, and then
the system invokes the
onResume() callback.

This is the state in which the
app interacts with the user.

The app stays in this state
until something happens to
take focus away from the
app.

Such an event might be, for
instance, receiving a phone
call, the user’s navigating to
another activity, or the
device screen’s turning off.

Lifecycle Callbacks – onPause()

The system calls this method as the
first indication that the user is
leaving your activity (though it
does not always mean the activity
is being destroyed).

It indicates that the activity is no
longer in the foreground (though it
may still be visible if the user is in
multi-window mode).

Use the onPause() method to
pause or adjust operations that
should not continue (or should
continue in moderation) while the
Activity is in the Paused state, and
that you expect to resume shortly.

There are several reasons why an
activity may enter this state. For
example: Some event interrupts
app execution, as described in the
onResume() section. This is the
most common case.

Lifecycle Callbacks – onStop()

The system may also call onStop() when the activity has finished running and is about to be
terminated.

This may occur, for example, when a newly launched activity covers the entire screen.

When your activity is no longer visible to the user, it has entered the Stopped state, and the
system invokes the onStop() callback.

Lifecycle
Callbacks –
onDestroy()

The system invokes this callback either
because:

The system invokes this callback either
because:

the activity is finishing (due to the
user completely dismissing the
activity or due to finish() being

called on the activity), or

the system is temporarily destroying
the activity due to a configuration
change (such as device rotation or

multi-window mode)

onDestroy() is called before the activity is
destroyed.

onDestroy() is called before the activity is
destroyed.

Android Intent

An Intent is an object that provides
runtime binding between separate
components, such as two activities.

The Intent represents an app’s intent
to do something.

You can use intents for a wide
variety of tasks, but in this lesson,
your intent starts another activity.

Intent Structures

Action
The general action to be performed,
such as ACTION_VIEW, ACTION_EDIT,

ACTION_MAIN, etc.

Data
The data to operate on, such as a

person record in the contacts database,
expressed as a Uri.

Intent Structures

Category
Gives additional information about the

action to execute. For example,
CATEGORY_LAUNCHER means it should
appear in the Launcher as a top-level

application.

Type
Specifies an explicit type (a MIME type)

of the intent data.

Intent Structures

Component
Specifies an explicit name of a
component class to use for the intent.

Extras
This is a Bundle of any additional
information. This can be used to provide
extended information to the component

Intent Resolution

Explicit Intents
have specified a component (via
setComponent(ComponentName) or
setClass(Context, Class)), which provides
the exact class to be run.

Implicit Intents
have not specified a component;
instead, they must include enough
information for the system to determine
which of the available components is
best to run for that intent.

Navigating
Between
Activities

Normally, when you run your Android app, the main activity
will appear as Main Activity.
Normally, when you run your Android app, the main activity
will appear as Main Activity.

By default, the main activity’s name is MainActivity and its
name is configured within AndroidManifest.xml file to
startup first.

By default, the main activity’s name is MainActivity and its
name is configured within AndroidManifest.xml file to
startup first.

The main activity includes all the navigation tools such as
buttons, images, and others to browse or navigate your
app which is usually consists or more than one activity.

The main activity includes all the navigation tools such as
buttons, images, and others to browse or navigate your
app which is usually consists or more than one activity.

Android Activity is a class which inherits all parameters from
the AppCompatActivity class.
Android Activity is a class which inherits all parameters from
the AppCompatActivity class.

Passing Data Between Activity

It is very likely that you
want to transfer some data
to the activity you want to
start through Intent.

Android SDK provides this
option by using extras
methods.

To add data to extras use
the putExtra() function.

To get/read data from
extras use the getExtra()
function.

Android Views

This class represents the basic
building block for user interface
components.

View is the based class for
widgets to create UI such as
buttons, text fields, layout, etc.

All of the views in a window are
arranged in a single tree.

List View

ListView is a view group that displays a list
of scrollable items.

The list are automatically inserted using an
Adapter that pulls content from a source
such as an array or database query.

Adapter will convert each item result into
a view that is placed into the list.

Lab 7:
Configuring
Android
RecyclerView

Adding a RecyclerView to an Activity

Creating a CardView

Creating Your RecyclerView Adapter

Adding Data to Your RecyclerView

Running and Testing Your RecyclerView

Adding Event Listeners to Each RecyclerView Row

Android Dialogs, Snackbar, Menus,
WebView and Notifications
LESSON 8

Android
Dialogs

A dialog is a small window that
prompts the user to make a
decision, enter additional
information or give a feedback.

It does not take the full screen
but part of it and asks users to
take a specific action before
they can proceed.

Dialog Sub-
Classes

AlertDialog

ProgressBar

SeekBar

DatePickerDialog

TimePickerDialog

Menus

Menus are common UI components
used to provide user actions and
other options in your activities.

As on Android 3.0, menus are
provided as a part of an action bar of
the activity.

Each activity in an application can
get its own options-menu.

The user can access the options
menu from the action bar by pressing
on the three dots icon.

WebView

You can embed a web browser inside
your application using web views.

A WebView class is a crucial component
for many applications that need to
display a website without worrying about
using Android’s native views.

Android
Notifications

 A notification is a message you display to the
user outside of you’re app’s regular user
interface.

 When your app sends a notification to the
Android OS, the notification manager service
(Android service) receives your app notification
and issues it.

 The notification appears first as an icon in the
notification area.

 To the details of the notification, the user should
open the notification drawer.

 Both notification area and drawer are system-
controlled areas that the user can view at any
time.

Android
Notifications

 In supported launchers and on devices running
Android 8.0 (API level 26) and higher;

 Apps can display notification badges on app
icons.

 Users can also long-press on an app icon to
glance at the notifications associated with a
notification badge.

Creating an
Android
Notification

A small icon, set by setSmallIcon()A small icon, set by setSmallIcon()

A title, set by setContentTitle()A title, set by setContentTitle()

Detail text, set by setContentText()Detail text, set by setContentText()

•On Android 8.0 (API level 26) and later versions, a valid
notification channel ID is set by setChannelId() or is
provided in the NotificationCompat.Builder constructor
when creating a channel.

•You should configure a notification channel code before
you configure notification message, because the
configuration of the notification message needs to use
the notification channel id which have configured first.

Notification ChannelNotification Channel

Notification
Channel

Starting in Android 8.0 (API level 26), all notifications must be
assigned to a channel.
Starting in Android 8.0 (API level 26), all notifications must be
assigned to a channel.

For each channel, you can set the visual and auditory behavior that
is applied to all notifications in that channel.
For each channel, you can set the visual and auditory behavior that
is applied to all notifications in that channel.

Then, users can change these settings and decide which
notification channels from your app should be intrusive or visible at
all.

Then, users can change these settings and decide which
notification channels from your app should be intrusive or visible at
all.

When you target Android 8.0 (API level 26), you must implement one
or more notification channels.
When you target Android 8.0 (API level 26), you must implement one
or more notification channels.

If your targetSdkVersion is set to 25 or lower, when your app runs on
Android 8.0 (API level 26) or higher, it behaves the same as it would
on devices running Android 7.1 (API level 25) or lower.

If your targetSdkVersion is set to 25 or lower, when your app runs on
Android 8.0 (API level 26) or higher, it behaves the same as it would
on devices running Android 7.1 (API level 25) or lower.

Lab 8:
Configuring
Android Web
Browser, Menu
and
Notification

Configuring Android Web
Browser

Adding Android Menu

Creating a notification channel
and a notification message

Android Storage, SQLite and
Content Providers
LESSON 9

Android
Storage
Options

• This technique stores application-specific primitive data in key-
values pairs.

Shared Preferences

• Store private data on the device memory using file I/O
technique. This data will not be accessible by other
applications.

Internal Storage

• Store public data on the shared external storage (such as SD
card).

External Storage

• Store data on the web using your own network server.

Network Connection

• Store structured data in a private database on the phone.

SQLite Databases

SQLite
Database in

Your
Application

 Default directory
/data/data/APP_NAME/databases/DATABASE_
FILE

 SQLiteOpenHelper

 This is a helper class to manage database
creation and version management.

 SQLiteDatabase
 SQLiteDatabase exposes methods to manage

an SQLite database.

 It has methods to create, execute SQL
commands and perform other common
database management tasks.

 Cursors
 The Cursor interface provides random access-

write access to the result set returned by a
database query.

Content
Providers

Content Providers are one of the building
blocks of Android applications.

They manage access to central repository of
data.

Usually Android applications keep the data
private and hide it from other applications.

However, sometimes you might need to share
the data with other applications.

For this purpose, content providers are mainly
used.

Should each
Android app
with SQLite
database
have a
content
provider?

You need to create a content provider
only if you want to share your application
data with other applications.

You do not need a content provider to
use SQLite database if the use occurs
completely within your application.

Creating a
Content
Provider

• Any file such as video, an image or an
audio.

• App stores the files in a private memory.

File DataFile Data

• Any databases, arrays, etc.
• Data stored compatible with tables of

rows and columns.
• SQLite database is the common way for

storing this type of data.

Structured DataStructured Data

Sync Adapters

There is often a need to send data to and
from a mobile device to a server.

Use Android’s sync adapter framework
which is very useful in data fetching,
synchronizing and scheduling updates
between the mobile and the server.

Sync adapter run asynchronously.

How Sync
Adapters
Work

Sync Adapters work by
cloning data from the

server into the local
database then use it

through a
ContentProvider.

The data is access using
the ContentProvider and
all the changes made to
the data are handled by

it.

That is the job of
SyncAdapter to match
the remote data with

the local data.

It pushes the new data
to the server and

fetches the updated
data from the server to

the mobile.

Steps to
create
SyncAdapter
framework

Running Running the Sync Adapter

Creating Creating the Sync Adapter

Writing Writing an authenticator component

Writing Writing the ContentProvider

ORMLite

Object-Relational Mapping

A third-party library that provides a
simple and lightweight functionality of
persisting objects to SQL databases.

Advantages
of ORMLite

Simple setup of classes by adding
annotations.

Easy construction of simple and
complex queries.

Support a wide variety of database
technologies.

Automatic generation of SQL to
create and drop tables.

Making native calls to Android SQLite
database APIs.

How-to
ORMLite

 @DatabaseTable

 @DatabaseField

Lab 9: SQLite
Databases
and Content
Providers

Creating an SQLite database

Querying a SQLite DB table

Creating Content Provider

Utilizing ORMLite Library

Location-Aware Apps: Using GPS
and Google Maps
LESSON 10

Introduction

Most of the mobile application nowadays rely on user’s geolocation and web mapping services.

The GPS is considered one of the most accurate geolocation providers.

In order to increase users’ experience of location awareness, geo-coordinates should be
represented graphically which can be achieved using web-mapping services such as Google
Maps.

What is GPS
and how

does it
work?

 The GPS is a navigation system based on
satellite.

 The GPS coordinates depend on the latitude
and longitude values.

 The connection between a GPS satellite and
the receivers (i.e. smart devices) is a one-way
connection.

 The connection works through the use of a
procedure called Trilateration.

 NAVSTAR is one of the mostly used satellite in all
mobile devices.

Other
Location
Service

Providers

 Both Cell-ID and WI-FI can be used as location
service providers.

 Android SDK options;

 LocationManager.GPS_PROVIDER

 LocationManager.NETWORK_PROVIDER

 Determining which provider to use relies on
three criteris;

 Accuracy

 Speed

 Battery consumption

Steps…

Configuring Google Maps

Map Fragment

Getting a Google API key

Adding a Google Map Marker

•Location Manager
•Location Listener

Methods to Capture a User’s Location

Reverse Geolocation and Geocoder Class

JSON and APi

Lab 10:
Location-
Aware Apps
using the GPS
and Google
Maps

Creating a Search App Interface

Getting a Google API key

Configuring Your App to Use Your API Key

Configuring User App’s Permission

Capturing Users’ Location

Finding the Nearest Restaurants to a User’s Current
Location

THE END

Iverson Online
Evaluation

https://feedback.iverson.com.my

Class ID:

THANK YOU! 

