
Iverson

Trainer’s Introduction
• Name: Asmaliza Ahzan @ Emma

• Email: asmaliza@iverson.com.my

• Senior Technical Consultant with Iverson Associates since 2012

• Been in training industry since 2008, graduated with MEng in Computer Systems
Engineering from University of Queensland, Australia

• Domain would be programming languages, application development, data
analytics/science, machine learning and artificial intelligence.

Now it’s your turn…
• Name

• Job Title/Role/Designation

• Experiencing with data analytics/science tools, process, projects etc.

• Expectations from this course

• Misc.

Some Logistics
• Class hours: 9am – 5pm

• Monday – Friday

• 1 hour lunch break

• Morning and afternoon breaks

Agenda – Day 1
• About Python

• Getting Started

• The Quick Python Overview

• The absolute basics

• Lists, tuples and sets

Agenda – Day 2
• Strings

• Dictionaries

• Control Flow

• Functions

• Modules and Scoping Rules

Agenda – Day 3
• Python Programs

• Using the Filesystem

• Reading and Writing Files

• Exceptions

Agenda – Day 4
• Classes and Object-Oriented

Programming

• Regular Expressions

• Data Types as Objects

• Packages

• Using Python Libraries

Agenda – Day 5
• Basic File Wrangling

• Processing Data Files

• Data Over the Network

• Saving Data

• Exploring Data

Training Objectives
• Master the fundamentals of writing Python

scripts

• Learn core Python scripting elements such
as variables and flow control structures

• Discover how to work with lists and
sequence data

• Write Python functions to facilitate code
reuse

• Use Python to read and write files

• Make their code robust by handling errors
and exceptions properly

• Work with the Python standard library

• Explore Python's object-oriented features

• Search text using regular expressions

Chapter 1

This chapter cover
• Why use python?

• What python does well?

• What python does not do as well?

• Why learn python 3?

Why Use Python?
• Easy to learn and use

• Mature and supportive Python community

• Hundreds of Python libraries and frameworks

• Versatility, efficiency, reliability, and speed

• Big Data, Machine Language and Cloud Computing

• First-choice Language

• The flexibility of Python language

• Use of Python in academics

• Automation

Background
• Python is a modern programming language developed by Guido van Rossum in the

1990s (and named after a famous comedic troupe).

• Although Python isn’t perfect for every application, its strengths make it a good choice
for many situations.

What Python Does Well
• Python is easy to use

• Python is expressive

• Python is readable

• Python is complete – “batteries included”

• Python is cross-platform

• Python is free

What Python Doesn’t Do Well
• Python isn’t the fastest language

• Python doesn’t have the most libraries

• Python doesn’t check variable types at compile time

• Python doesn’t have much mobile support

• Python doesn’t use multiple processors well

Why Learn Python 3?
• Python has been around for a number of years and has evolved over that time.

• Python 3, originally whimsically dubbed Python 3000, is notable because it’s the first
version of Python in the history of the language to break backward compatibility.

• What this means is that code written for earlier versions of Python probably won’t run on
Python 3 without some changes.

• Why learn Python 3? Because it’s the best Python so far.

Summary
• Python is a modern, high-level language with dynamic typing and simple, consistent

syntax and semantics.

• Python is multiplatform, highly modular, and suited for both rapid development and
large-scale programming.

• It’s reasonably fast and can be easily extended with C or C++ modules for higher
speeds.

• Python has built-in advanced features such as persistent object storage, advanced hash
tables, expandable class syntax, and universal comparison functions.

• Python includes a wide range of libraries such as numeric processing, image
manipulation, user interfaces, and web scripting.

• It’s supported by a dynamic Python community.

Chapter 2

This chapter cover
• Installing Python

• Using IDLE and the basic interactive mode

• Writing a simple program

• Using Visual Studio Code

• Using Python shell

Setup the Environment
Activity

Installing Python
• Installer can be downloaded from https://www.python.org/downloads/

Basic Interactive Mode
• Launch from terminal/command prompt.

IDLE
• IDLE is the built-in development environment for Python.

Visual Studio Code
• Download the installer from

https://code.visualstudio.com/

• Once installed, add the
Python plugin.

Simple Program
• In VS Code, create new file hello.py

• Type below codes;

print("Hello World")

• To execute the codes, click on the Play button (right-top)

Using python shell

Python help

Python help - Functions

Summary
• Installing Python 3 on Windows systems is as simple as downloading the latest installer

from www.python.org and running it. Installation on Linux, UNIX, and Mac systems will
vary.

• Refer to installation instructions on the Python website and use your system’s software
package installer where possible.

• Another installation option is to install the Anaconda (or miniconda) distribution from
https://www.anaconda.com/download/.

• After you’ve installed Python, you can use either the basic interactive shell (and later,
your favorite editor) or the IDLE integrated development environment.

Chapter 3

This chapter covers
• Surveying Python

• Using built-in data types

• Controlling program flow

• Creating modules

• Using Object-Oriented programming

Python Synopsis
• Python has several built-in data types, such as integers, floats, complex numbers, strings,

lists, tuples, dictionaries, and file objects.

• These data types can be manipulated using language operators, built-in functions,
library functions, or a data type’s own methods.

• Programmers can also define their own classes and instantiate their own class instances.

• These class instances can be manipulated by programmer-defined methods, as well as
the language operators and built-in functions for which the programmer has defined the
appropriate special method attributes.

Python Synopsis
• Python provides conditional and iterative control flow through an if-elif-else construct

along with while and for loops. It allows function definition with flexible argument-
passing options.

• Exceptions (errors) can be raised by using the raise statement, and they can be caught
and handled by using the try-except-else-finally construct.

• Variables (or identifiers) don’t have to be declared and can refer to any built-in data
type, user-defined object, function, or module.

Built-in Data Types
• Numbers

• Lists

• Tuples

• Strings

• Dictionaries

• Sets

• File Objects

Numbers
• Python’s four number types are integers, floats, complex numbers, and Booleans:

• Integers—1, –3, 42, 355, 888888888888888, –7777777777 (integers aren’t limited in size
except by available memory)

• Floats—3.0, 31e12, –6e-4

• Complex numbers—3 + 2j, –4- 2j, 4.2 + 6.3j

• Booleans—True, False

Numbers

String
• String processing is one of Python’s strengths.

• Strings can be delimited by single (' '), double (" "), triple single (''' '''), or triple double
(""" """) quotations and can contain tab (\t) and newline (\n) characters.

• Strings are also immutable.

String
• Strings have several methods to work

with their contents, and the re library
module also contains functions for
working with strings.

String
• The print function outputs strings. Other Python data types can be easily converted to

strings and formatted.

Lists
• A list can contain a mixture of other types as

its elements, including strings, tuples, lists,
dictionaries, functions, file objects, and any
type of number.

• A list can be indexed from its front or back.
You can also refer to a subsegment, or slice,
of a list by using slice notation.

Tuples
• Tuples are similar to lists but are immutable - that is, they can’t be modified after they’ve

been created.

• A list can be converted to a tuple by using the built-in function tuple and vice-versa
using the built-in function list.

Dictionaries
• Python’s built-in dictionary data type provides associative array functionality

implemented by using hash tables.

• The built-in len() function returns the number of key-value pairs in a dictionary.

• The del statement can be used to delete a key-value pair.

• As is the case for lists, several dictionary methods (clear, copy, get, items, keys, update,
and values) are available

• Keys must be of an immutable type B, including numbers, strings, and tuples.

• Values can be any kind of object, including mutable types such as lists and dictionaries.

Dictionaries

Sets
• A set in Python is an unordered collection of

objects, used in situations where membership
and uniqueness in the set are the main things you
need to know about that object.

• Sets behave as collections of dictionary keys
without any associated values.

File Objects
A file is accessed through
a Python file object.

Control Flow Structures
• Python has a full range of structures to control code execution and program flow,

including common branching and looping structures.

• Python has several ways of expressing Boolean values; the Boolean constant False, 0, the
Python nil value None, and empty values (for example, the empty list [] or empty string
"") are all taken as False.

• The Boolean constant True and everything else is considered True.

• The comparison operators (<, <=, ==, >, >=, !=, is, is not, in, not in) and the logical
operators (and, not, or), which all return True or False.

The if-elif-else Statement
• The block of code after the first True condition (of an if or an

elif) is executed.

• If none of the conditions is True, the block of code after the
else is executed.

• The elif and else clauses are optional B, and there can be
any number of elif clauses.

• No explicit delimiters, such as brackets or braces, are
necessary.

• All these statements must be at the same level of
indentation.

The while Loop
• The while loop is executed as long as the

condition (which here is x > y) is True.

The for Loop
• The for loop is simple but powerful because it’s possible to iterate over any iterable

type, such as a list or tuple.

• Unlike in many languages, Python’s for loop iterates over each of the items in a
sequence (for example, a list or tuple), making it more of a foreach loop.

Function Definition
• Functions are defined by using the

def statement.

• The return statement is what a
function uses to return a value.

• This value can be of any type. If no
return statement is encountered,
Python’s None value is returned.

• Function arguments can be entered
either by position or by name
(keyword).s

Exceptions
• Exceptions (errors) can be caught

and handled by using the try-except-
else-finally compound statement.

• This statement can also catch and
handle exceptions you define and
raise yourself.

• Any exception that isn’t caught
causes the program to exit.

Context handling using the with keyword
• A more streamlined way of encapsulating the try-except-finally pattern is to use the with

keyword and a context manager.

• One benefit of context managers is that they may (and usually do) have default cleanup
actions defined, which always execute whether an exception occurs.

Module Creation
• It’s easy to create your own modules, which can be imported and used in the same way

as Python’s built-in library modules.

• The example in this listing is a simple module with one function that prompts the user to
enter a filename and determines the number of times that words occur in this file.

Object-Oriented Programming
• Python provides full support for OOP.

• Listing is an example that might be the start of a simple shapes module for a drawing
program.

• Classes are defined by using the class keyword.

• The instance initializer method (constructor) for a class is always called __init__

• Methods, like functions, are defined by using the def keyword.

Summary
• This chapter is a rapid and very high-level overview of Python; the following chapters

provide more detail. This chapter ends the book’s overview of Python.

• You may find it valuable to return to this chapter and work through the appropriate
examples as a review after you read about the features covered in subsequent chapters.

• If this chapter was mostly a review for you, or if you’d like to learn more about only a few
features, feel free to jump around, using the index or table of contents.

• You should have a solid understanding of the Python features in this chapter before
skipping ahead to part 4.

Chapter 4

This chapter covers
• Indenting and block structuring

• Differentiating comments

• Assigning variables

• Evaluating expressions

• Using common data types

• Getting user input

• Using correct Pythonic style

Indentation and block structuring
• Python differs from most other programming languages because it uses whitespace and

indentation to determine block structure.

Advantages of indentation
• It’s impossible to have missing or extra braces. You never need to hunt through your

code for the brace near the bottom that matches the one a few lines from the top.

• The visual structure of the code reflects its real structure, which makes it easy to grasp
the skeleton of code just by looking at it.

• Python coding styles are mostly uniform. In other words, you’re unlikely to go crazy from
dealing with someone’s idea of aesthetically pleasing code. Everyone’s code will look
pretty much like yours.

Differentiating comments
• For the most part, anything following a # symbol in a Python file is a comment and is

disregarded by the language.

• The obvious exception is a # in a string, which is just a character of that string.

Variables and assignments
• In Python, unlike in many other computer languages, neither a variable type declaration

nor an end-of-line delimiter is necessary.

• The line is ended by the end of the line.

• Variables are created automatically when they’re first assigned.

• Python variables can be set to any object, whereas in C and many other languages,
variables can store only the type of value they’re declared as.

• The following is perfectly legal Python code

Expressions
• Arithmetic and similar expressions.

• Standard rules of arithmetic precedence apply. If you’d left out the parentheses in the
last line, the code would’ve been calculated as x + (y / 2).

Try This
• In your editor, create some variables.

• What happens when you try to put spaces, dashes, or other nonalphanumeric characters
in the variable name?

• Play around with a few complex expressions, such as x = 2 + 4 * 5 – 6 / 3. Use
parentheses to group the numbers in different ways and see how the result changes
compared with the original ungrouped expression.

Strings
• Python, like most other programming languages, indicates strings using double quotes.

Numbers
• Python offers four kinds of numbers: integers, floats, complex numbers, and Booleans.

Built-in numeric functions
• abs

• div

• mod

• float

• hex

• int

• max

• min

• oct

• pow

• round

Advanced numeric functions
• from math import *

cosceilatanasinacos

floorfabsexpecosh

logldexphypotfrexpfmod

sinpowpimodlog10

tanhtansqrtsinh

Try This
• In your editor, create some string and number variables (integers, floats, and complex

numbers).

• Experiment a bit with what happens when you do operations with them, including
across types.

• Can you multiply a string by an integer, for example, or can you multiply it by a float or
complex number?

• Also load the math module and try a few of the functions; then load the cmath module
and do the same. What happens if you try to use one of those functions on an integer or
float after loading the cmath module? How might you get the math module functions
back?

The None Value
• Python has a special basic data type that defines a single special data object called

None.

• As the name suggests, None is used to represent an empty value.

• None is often useful in day-to-day Python programming as a placeholder to indicate a
point in a data structure where meaningful data will eventually be found, even though
that data hasn’t yet been calculated.

Getting input from the user
• Use the input() function to get input from the user.

Try This
• Experiment with the input() function to get string and integer input. Using code similar

to the previous code, what is the effect of not using int() around the call to input()for
integer input?

• Can you modify that code to accept a float - say, 28.5?

• What happens if you deliberately enter the wrong type of value? Examples include a
float in which an integer is expected and a string in which a number is expected - and
vice versa.

Built-in operators
• Python provides various built-in operators, from the standard (+, *, and so on) to the

more esoteric, such as operators for performing bit shifting, bitwise logical functions,
and so forth.

• Most of these operators are no more unique to Python than to any other language.

Basic Python style
ExampleSuggestionSituation

imp, sysShort, all lowercase,
underscores only if needed

Module/package names

Function namesAll lowercase,
underscores_for_readability

Function names

my_varAll lowercase,
underscores_for_readability

Variable names

Four spaces per level, no
tabs

Indentation

if my_var:
if not my_var:

Don’t compare explicitly to
True or False

Comparison

Quick Check
• Which of the following variable and function names do you think are not good Pythonic

style? Why?

foobarVERYLONGVARNAMEvarNamebar()

really_very_long_var_n
ame

foo_bar()longvarname

Summary
• The basic syntax summarized above is enough to start writing Python code.

• Python syntax is predictable and consistent.

• Because the syntax offers few surprises, many programmers can get started writing code
surprisingly quickly.

Chapter 5

This chapter covers
• Manipulating lists and list indices

• Modifying lists

• Sorting

• Using common list operations

• Handling nested lists and deep copies

• Using tuples

• Creating and using sets

Lists are like arrays
• A list in Python is an ordered collection of objects.

• You create a list by enclosing a comma-separated list of elements in square brackets.

• Python lists can contain different types of elements; a list element can be any Python
object.

• Probably the most basic built-in list function is the len() function, which returns the
number of elements in a list

List indices
• Python list index start with 0.

• If indices are negative numbers, they indicate positions counting from the end of the list,
with –1 being the last position in the list, –2 being the second-to-last position, and so
forth.

Slicing
• Creating a subset from the list.

Try This
• Using what you know about the len() function and list slices, how would you combine

the two to get the second half of a list when you don’t know what size it is?

• Experiment in the Python shell to confirm that your solution works.

Modifying Lists
• Add

• Append

• Remove

• Extend

• Insert

• Delete

• Reverse

Try This
• Suppose that you have a list 10 items long.

• How might you move the last three items from the end of the list to the beginning,
keeping them in the same order?

• Example:

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

• Expected result:

result = [8, 9, 10, 1, 2, 3, 4, 5, 6, 7]

Sorting Lists
• Lists can be sorted by using the built-in Python sort method.

• To sort a list without changing the original list, you have two options.

• use the sorted() built-in function,

• make a copy of the list and sort the copy

• According to the built-in Python rules for comparing complex objects, the sublists are
sorted first by ascending first element and then by ascending second element.

The sorted() function
• Python also has the built-in function sorted(), which returns a sorted list from any

iterable.

• sorted() uses the same key and reverse parameters as the sort method.

Try This
• Suppose that you have a list in which each element is in turn a list:

[[1, 2, 3], [2, 1, 3], [4, 0, 1]].

• If you wanted to sort this list by the second element in each list so that the result would
be [[4,0, 1], [2, 1, 3], [1, 2, 3]], what function would you write to pass as the key value to
the sort() method?

Other common list operations
• List membership with the in operator

• List concatenation with the + operator

• List initialization with the * operator

• List minimum or maximum with min and max

• List search with index

• List matches with count

Try This
• What would be the result of len([[1,2]] * 3)?

• What are two differences between using the in operator and a list’s index() method?

• Which of the following will raise an exception?:

min([“a”, “b”, “c”]);
max([1, 2, “three”]); [1, 2, 3].count(“one”)

Try This
• If you have a list x, write the code to safely remove an item if - and only if - that value is in

the list.

• Modify that code to remove the element only if the item occurs in the list more than
once.

Nested lists and deep copies
• Lists can be nested.

• One application of nesting is to represent two-dimensional matrices.

• The members of these matrices can be referred to by using two-dimensional indices.

Tuples
• Tuples are data structures that are very similar to lists, but they can’t be modified; they

can only be created.

• Tuples are so much like lists that you may wonder why Python bothers to include them.

• The reason is that tuples have important roles that can’t be efficiently filled by lists, such
as keys for dictionaries.

Tuples Basics
• Creating a tuple is similar to creating a list: assign a

sequence of values to a variable.

• A list is a sequence that’s enclosed by [and]; a tuple is
a sequence that’s enclosed by (and)

Sets
• A set in Python is an unordered collection of objects used when membership and

uniqueness in the set are main things you need to know about that object.

• Like dictionary keys (discussed in chapter 7), the items in a set must be immutable and
hashable.

• This means that ints, floats, strings, and tuples can be members of a set, but lists,
dictionaries, and sets themselves can’t.

Sets
• Create

• Add

• Remove

• In operator

• Convert list to set

• Logical operations

Try This
• If you were to construct a set from the following list, how many elements would the set

have?: [1, 2, 5, 1, 0, 2, 3, 1, 1, (1, 2, 3)] ?

Examining a List

Summary
• Lists and tuples are structures that embody the idea of a sequence of elements, as are

strings.

• Lists are like arrays in other languages, but with automatic resizing, slice notation, and
many convenience functions.

• Tuples are like lists but can’t be modified, so they use less memory and can be
dictionary keys (see chapter 7).

• Sets are iterable collections, but they’re unordered and can’t have duplicate elements.

Chapter 6

This chapter covers
• Understanding strings as sequences of characters

• Using basic string operations

• Inserting special characters and escape sequences

• Converting from objects to strings

• Formatting strings

• Using the byte type

Strings as sequences of characters
• For the purposes of extracting characters and

substrings, strings can be considered to be
sequences of characters, which means that
you can use index or slice notation.

• Python strings can’t be modified.

Basic string operations
• The simplest (and probably most common) way to combine Python strings is to use the

string concatenation operator +

Special characters and escape
sequences

Character representedEscape Sequence

Single-quote character\’

Double-quote character\”

Backlash character\\

Bell character\a

Backspace character\b

Formfeed character\f

Newline character\n

Carriage-return character\r

Tab character\t

Vertical tab character\v

String methods
• join()

• split()

Quick Check
• How could you use split and join to change all the whitespace in string x to dashes, such

as changing “this is a test” to “this-is-a-test”?

Converting strings to numbers
• Use the functions int and float to convert

strings to integer or floating-point numbers,
respectively.

• If they’re passed a string that can’t be
interpreted as a number of the given type,
these functions raise a ValueError exception.

Quick Check
• Which of the following will not be converted to numbers, and why?

int(‘a1’)

int('12G', 16)

float("12345678901234567890")

int("12*2")

Getting rid of extra whitespace
• strip()

• lstrip()

• rstrip()

Quick Check
• If the string x equals "(name, date),\n", which of the following would return a string

containing "name, date"?

x.rstrip("),")

x.strip("),\n")

x.strip("\n)(,")

String searching
• find()

• rfind()

• index()

• rindex()

• count()

• startswith()

• endswith()

Modifying strings
• Strings are immutable, but string objects have several methods that can operate on that

string and return a new string that’s a modified version of the original string.

• This provides much the same effect as direct modification for most purposes.

Modifying strings with list
manipulations
• Strings are immutable objects.

• Turn the string into a list of characters, do whatever you want, and then turn the resulting
list back into a string.

Quick Check
• What would be a quick way to change all punctuation in a string to spaces?

Converting from objects to strings
• In Python, almost anything can be converted to some sort of a string representation by

using the built-in repr function.

Using the format method

Formatting strings with %

Using formatting sequences
• All formatting sequences are substrings contained in the string on the left side of the

central %.

• Each formatting sequence begins with a percent sign and is followed by one or more
characters that specify what is to be substituted for the formatting sequence and how
the substitution is to be accomplished.

Named parameters and formatting
sequences

Quick Check
• What would be in the variable x after the following snippets of code have executed?

x = "%.2f" % 1.1111

x = "%(a).2f" % {'a':1.1111}

x = "%(a).08f" % {'a':1.1111}

String interpolation
• Starting in Python 3.6, there’s a way to create string constants containing arbitrary values,

which is called string interpolation.

• String interpolation is a way to include the values of Python expressions inside literal
strings.

• These f-strings, as they’re commonly called because they are prefixed with f, use a syntax
similar to that of the format method, but with a little less overhead.

Preprocessing Text

Summary
• Python strings have powerful text-processing features, including searching and

replacing, trimming characters, and changing case.

• Strings are immutable; they can’t be changed in place.

• Operations that appear to change strings actually return a copy with the changes.

• The re (regular expression) module has even more powerful string capabilities, which
are discussed in chapter 16.

Chapter 7

This chapter covers
• Defining a dictionary

• Using dictionary operations

• Determining what can be used as a key

• Creating sparse matrices

• Using dictionaries as caches

• Trusting the efficiency of dictionaries

What is a dictionary?
• Dictionaries access values by means of integers, strings, or other Python objects called

keys, which indicate where in the dictionary a given value is found.

• Both lists and dictionaries can store objects of any type.

• Values stored in a dictionary are not implicitly ordered relative to one another because
dictionary keys aren’t just numbers.

Dictionaries
• A dictionary is a way of mapping from one set of arbitrary objects to an associated but

equally arbitrary set of objects.

Other dictionary operations
ExampleExplanationDictionary

Operation
x = {}Creates an empty dictionary{}

len(x)Returns the number of entries in a dictionarylen

x.keys()Returns a view of all keys in a dictionarykeys

x.values()Returns a view of all values in a dictionaryvalues

x.items()Returns a view of all items in a dictionaryitems

del(x[key])Removes an entry from a dictionarydel

'y' in xTests whether a key exists in a dictionaryin

x.get('y', None)Returns the value of a key or a configurable
default

get

y = x.copy()Makes a shallow copy of a dictionarycopy

Quick Check
• Assume that you have a dictionary x = {'a':1, 'b':2, 'c':3, 'd':4} and a dictionary y = {'a':6,

'e’:5, 'f':6}. What would be the contents of x after the following snippets of code have
executed?:

del x['d’]

z = x.setdefault('g', 7)

x.update(y)

Word counting

What can be used as a key?
Dictionary key?Hashtable?Immutable?Python type

YesYesYesint

YesYesYesfloat

YesYesYesboolean

YesYesYescomplex

YesYesYesstr

YesYesYesbytes

NoNoNobytearray

NoNoNolist

SometimesSometimesYestuple

noNoNoset

Sparse matrices
• In mathematical terms, a matrix is a two-dimensional grid of numbers, usually written in

textbooks as a grid with square brackets on each side.

• A fairly standard way to represent such a matrix is by means of a list of lists.

• To implement sparse matrices by using dictionaries with tuple indices.

Efficiency of dictionaries
• The truth is that the Python dictionary implementation is quite fast.

• Many of the internal language features rely on dictionaries, and a lot of work has gone
into making them efficient.

• Because all of Python’s data structures are heavily optimized, you shouldn’t spend much
time worrying about which is faster or more efficient.

• If the problem can be solved more easily and cleanly by using a dictionary than by using
a list, do it that way, and consider alternatives only if it’s clear that dictionaries are
causing an unacceptable slowdown.

Using Dictionaries

Summary
• Dictionaries are powerful data structures, used for many purposes even within Python

itself.

• Dictionary keys must be immutable, but any immutable object can be a dictionary key.

• Using keys means accessing collections of data more directly and with less code than
many other solutions.

Chapter 8

This chapter covers
• Repeating code with a while loop

• Making decisions: the if-elif-else statement

• Iterating over a list with a for loop

• Using list and dictionary comprehensions

• Delimiting statements and blocks with indentation

• Evaluating Boolean values and expressions

The while Loop

The if-elif-else statement

The for loop

The range function

Quick Check
• Suppose that you have a list x = [1, 3, 5, 0, -1, 3, -2], and you need to remove all negative

numbers from that list. Write the code to do this.

• How would you count the total number of negative numbers in a list
y = [[1, -1, 0], [2, 5, -9], [-2, -3, 0]]?

• What code would you use to print very low if the value of x is below -5, low if it’s from -5
up to 0, neutral if it’s equal to 0, high if it’s greater than 0 up to 5, and very high if it’s
greater than 5?

Boolean values and expressions
• Python has a Boolean object type that can be set to either True or False. Any expression

with a Boolean operation returns True or False.

• The numbers 0, 0.0, and 0+0j are all False; any other number is True.

• The empty string "" is False; any other string is True.

• The empty list [] is False; any other list is True.

• The empty dictionary {} is False; any other dictionary is True.

• The empty set set() is False; any other set is True.

• The special Python value None is always False.

Writing a simple program to analyze a text file

Refactor word_count

Summary
• Python uses indentation to group blocks of code.

• Python has loops using while and for, and conditionals using if-elif-else.

• Python has the Boolean values True and False, which can be referenced by variables.

• Python also considers any 0 or empty value to be False and any nonzero or nonempty
value to be True.

Chapter 9

This chapter covers
• Defining functions

• Using function parameters

• Passing mutable objects as parameters

• Understanding local and global variables

• Creating and using generator functions

• Creating and using lambda expressions

• Using decorators

Basic function definitions

Function with parameters

Function with default parameter

Named parameter

Variable numbers of arguments

Indefinite number of arguments

Mutable objects as arguments

Function as parameter

Lambda Expressions
• lambda expressions are anonymous little functions that you can quickly define inline.

Generator functions
• A generator function is a special kind of function that you can use to define your own

iterators.

• When you define a generator function, you return each iteration’s value using the yield
keyword.

• The generator will stop returning values when there are no more iterations, or it
encounters either an empty return statement or the end of the function.

• Local variables in a generator function are saved from one call to the next, unlike in
normal functions

Decorators
• A decorator is syntactic

sugar for this process and
lets you wrap one function
inside another with a one-
line addition.

• It still gives you exactly the
same effect as the
previous code, but the
resulting code is much
cleaner and easier to read.

How to use decorators?
• Very simply, using a decorator involves two parts: defining the function that will be

wrapping or “decorating” other functions.

• Use an @ followed by the decorator immediately before the wrapped function is
defined.

• The decorator function should take a function as a parameter and return a function.

• Example on next slide.

Useful functions

Summary
• External variables can easily be accessed within a function by using the global

statement.

• Arguments may be passed by position or by parameter name.

• Default values may be provided for function parameters.

• Functions can collect arguments into tuples, giving you the ability to define functions
that take an indefinite number of arguments.

• Functions can collect arguments into dictionaries, giving you the ability to define
functions that take an indefinite number of arguments passed by parameter name.

• Functions are first-class objects in Python, which means that they can be assigned to
variables, accessed by way of variables, and decorated.

Chapter 10

This chapter covers
• Defining a module

• Writing a first module

• Using the import statement

• Modifying the module search path

• Making names private in modules

• Importing standard library and third-party modules

• Understanding Python scoping rules and namespaces

What is a module?
• A module is a file containing code.

• It defines a group of Python functions or other objects, and the name of the module is
derived from the name of the file.

A first module
• Create a text file called mymath.py, and in that text file, enter the Python code in listing

10.1.

To use the module
• Import the module

• Start using the module

Modules
• A module is a file defining Python objects.

• If the name of the module file is modulename.py, the Python name of the module is
modulename.

• You can bring a module named modulename into use with the import modulename
statement. After this statement is executed, objects defined in the module can be
accessed as modulename.objectname.

• Specific names from a module can be brought directly into your program by using the
from modulename import objectname statement. This statement makes objectname
accessible to your program without your needing to prepend it with modulename, and
it’s useful for bringing in names that are often used.

Where to place your own modules
• Place your modules in one of the directories that Python normally searches for modules.

• Place all the modules used by a Python program in the same directory as the program.

• Create a directory (or directories) to hold your modules, and modify the sys.path
variable so that it includes this new directory (or directories).

Private names in modules
• The exception is that identifiers in the module beginning with an underscore can’t be

imported with from module import *.

• By starting all internal names (that is, names that shouldn’t be accessed outside the
module) with an underscore, you can ensure that from module import * brings in only
those names that the user will want to access.

Library and third-party modules
• After you’ve installed Python, all the functionality in these library modules is available to

you.

• All that’s needed is to import the appropriate modules, functions, classes, and so forth
explicitly, before you use them.

• Available third-party modules and links to them are identified in the Python Package
Index (pyPI), which will be discussed in chapter 19.

• You need to download these modules and install them in a directory in your module
search path to make them available for import into your programs.

Python scoping rules and namespaces
• A namespace in Python is a mapping from

identifiers to objects - that is, how Python keeps
track of what variables and identifiers are active
and what they point to.

Create a module

Summary
• Python modules allow you to put related code and objects into a file.

• Using modules also helps prevent conflicting variable names, because imported

• objects are normally named in association with their module.

Chapter 11

This chapter covers
• Creating a very basic program

• Combining programs and modules

• Distributing Python applications

Creating a very basic program
• Any group of Python statements placed sequentially in a file can be used as a program,

or script.

• But it’s more standard and useful to introduce additional structure.

• In its most basic form, this task is a simple matter of creating a controlling function in a
file and calling that function.

Command-line arguments

Using the fileinput module
• It provides support for

processing lines of input from
one or more files.

• It automatically reads the
command-line arguments (out
of sys.argv) and takes them as
its list of input files.

• Then it allows you to
sequentially iterate through
these lines.

Input files

Quick Check
• Match the following ways of interacting with the command line and the correct use case

for each:

Multiple arguments and options

No arguments or just one argument

Processing multiple files

Using the script as a filter

sys.agrv

Use file_input module

Redirect standard input and output

Use argparse module

Programs and Modules
• For small scripts that contain only a few lines of code, a single function works well.

• But if the script grows beyond this size, separating your controlling function from the
rest of the code is a good option to take.

• The script in the next listing returns the English-language name for a given number
between 0 and 99.

Distributing Python applications
• Share the source files, of course, probably bundled in a zip or tar file.

• Assuming that the applications were written portably, you could also ship only the
bytecode as .pyc files.

• Wheels packages

• zipapp and pex

• py2exe and py2app

• Creating executable programs with freeze

Summary
• Python scripts and modules in their most basic form are just sequences of Python

statements placed in a file.

• Modules can be instrumented to run as scripts, and scripts can be set up so that they
can be imported as modules.

• Scripts can be made executable on the UNIX, macOS, or Windows command lines. They
can be set up to support command-line redirection of their input and output, and with
the argparse module, it’s easy to parse out complex combinations of command-line
arguments.

• On macOS, you can use the Python Launcher to run Python programs, either individually
or as the default application for opening Python files.

Summary
• On Windows, you can call scripts in several ways: by opening them with a double-click,

using the Run window, or using a command-prompt window.

• Python scripts can be distributed as scripts, as bytecode, or in special packages called
wheels.

• py2exe, py2app, and the freeze tool provide an executable Python program that runs on
machines that don’t contain a Python interpreter.

• Now that you have an idea of the ways to create scripts and applications, the next step is
looking at how Python can interact with and manipulate filesystems.

Chapter 12

This chapter covers
• Managing paths and pathnames

• Getting information about files

• Performing filesystem operations

• Processing all files in a directory subtree

os and os.path vs. pathlib
• The traditional way that file paths and filesystem operations have been handled in

Python is by using functions included in the os and os.path modules.

• These functions have worked well enough but often resulted in more verbose code than
necessary.

• Since Python 3.5, a new library, pathlib, has been added; it offers a more object-oriented
and more unified way of doing the same operations.

Paths and pathnames
• All operating systems refer to files and directories with strings naming a given file or

directory.

• Strings used in this manner are usually called pathnames (or sometimes just paths).

• Pathname semantics across operating systems are very similar because the filesystem on
almost all operating systems is modeled as a tree structure, with a disk being the root
and folders, subfolders, and so on being branches, subbranches, and so on.

• Different operating systems have different conventions regarding the precise syntax of
pathnames.

Absolute and relative paths
• These operating systems allow two types of pathnames:

• Absolute pathnames specify the exact location of a file in a filesystem without any
ambiguity; they do this by listing the entire path to that file, starting from the root of
the filesystem.

• Relative pathnames specify the position of a file relative to some other point in the
filesystem, and that other point isn’t specified in the relative pathname itself; instead,
the absolute starting point for relative pathnames is provided bythe context in which
they’re used.

• As examples, here are two Windows absolute pathnames:

C:\Program Files\Doom

D:\backup\June

Absolute and relative paths
• and here are two Linux absolute pathnames and a Mac absolute pathname:

/bin/Doom

/floppy/backup/June

/Applications/Utilities

• and here are two Windows relative pathnames:

mydata\project1\readme.txt

games\tetris

• and these are Linux/UNIX/Mac relative pathnames:

mydata/project1/readme.txt

games/tetris

Utilities/Java

The current working directory
• The directory that a Python

program is in is called the current
working directory for that
program.

• This directory may be different
from the directory the program
resides in.

Accessing directories with pathlib
• To get the current directory with pathlib, you could do the following:

import pathlib

cur_path = pathlib.Path()

cur_path.cwd()

Manipulating pathnames
• To start, construct a few pathnames on different operating systems, using the

os.path.join function.

• Note that importing os is sufficient to bring in theos.path submodule also; there’s no
need for an explicit import os.path statement.

import os

print(os.path.join('bin', 'utils', 'disktools'))

Manipulating pathnames with pathlib
• Start by constructing a few pathnames on different operating systems, using the path

object’s methods.

from pathlib import Path

cur_path = Path()

print(cur_path.joinpath('bin', 'utils', 'disktools'))

Useful constants and functions
• Checks whether the parent of the parent of path is a directory.

os.path.isdir(os.path.join(path, os.pardir, os.curdir))

• Returns a list of filenames in the current working directory.

os.listdir(os.curdir)

• The os.name constant returns the name of the Python module imported to handle the
operating system–specific details.

os.name

Getting information about files
• The most commonly used Python path-information functions are

• os.path.exists
• os.path.isfile
• os.path.isdir
• os.path.islink
• os.path.ismount
• os.path.samefile(path1, path2)
• os.path.isabs(path)
• os.path.getsize(path)
• os.path.getmtime(path)
• os.path.getatime(path)

More filesystem operations
• glob.glob("*")

• The glob function from the glob module (named after an old UNIX function that did
pattern matching) expands Linux/UNIX shell-style wildcard characters and character
sequences in a pathname, returning the files in the current working directory that
match.

• os.rename
• To rename or move a file or directory.

• os.remove
• To remove or delete a data file.

• os.makedirs or os.mkdir

• os.rmdir

Processing all files in a directory
subtree
• Finally, a highly useful function for traversing recursive directory structures is the os.walk

function.

• You can use it to walk through an entire directory tree, returning three things for each
directory it traverses: the root, or path, of that directory; a list of its subdirectories; and a
list of its files.

• When called, os.walk creates an iterator that recursively applies itself to all the
directories contained in the top parameter. In other words, for each subdirectory subdir
in names, os.walk recursively invokes a call to itself, of the form os.walk(subdir, ...).

Summary
• Python provides a group of functions and constants that handle filesystem references

(pathnames) and filesystem operations in a manner independent of the underlying
operating system.

• For more advanced and specialized filesystem operations that typically are tied to a
certain operating system or systems, look at the main Python documentation for the os,
pathlib, and posix modules.

Chapter 13

This chapter covers
• Opening files and file objects

• Closing files

• Opening files in different modes

• Reading and writing text or binary data

Opening files and file objects
• The traditional way that file paths and filesystem operations have been handled in

Python is by using functions included in the os and os.path modules.

• These functions have worked well enough but often resulted in more verbose code than
necessary.

• Since Python 3.5, a new library, pathlib, has been added; it offers a more object-oriented
and more unified way of doing the same operations.

Read text file: KORD.TXT

Program to read text file

Opening files in write or other modes
• The second argument of the open command is a string denoting how the file should be

opened.

• 'r' means “Open the file for reading,”

• 'w' means “Open the file for writing” (any data already in the file will be erased),

• and 'a' means “Open the file for appending” (new data will be appended to the end
of any data already in the file).

• If you want to open the file for reading, you can leave out the second argument; 'r' is
the default.

Reading and writing with pathlib
• In addition to its path-manipulation powers discussed in chapter 12, a Path object can

be used to read and write text and binary files.

• This capability can be convenient because no open or close is required, and separate
methods are used for text and binary operations.

• One limitation, however, is that you have no way to append by using Path methods,
because writing replaces any existing content.

Screen input/output and redirection
• Use the built-in input method to prompt for and read an input string.

Summary
• File input and output in Python uses various built-in functions to open, read, write, and

close files.

• In addition to reading and writing text, the struct module gives you the ability to read or
write packed binary data.

• The pickle and shelve modules provide simple, safe, and powerful ways of saving and
accessing arbitrarily complex Python data structures.

Chapter 14

This chapter covers
• Understanding exceptions

• Handling exceptions in Python

• Using the with keyword

General philosophy of errors and
exception handling
• SOLUTION 1: DON’T HANDLE THE PROBLEM

• The simplest way to handle this disk-space problem is to assume that there’ll always
be adequate disk space for whatever files you write and that you needn’t worry
about it.

• Unfortunately, this option seems to be the most commonly used.

• SOLUTION 2: ALL FUNCTIONS RETURN SUCCESS/FAILURE STATUS

• There are numerous ways to do this, but a typical method is to have

• each function or procedure return a status value that indicates whether that function
or procedure call executed successfully.

• SOLUTION 3: THE EXCEPTION MECHANISM

• The code checks for errors on each attempted file write and passes an error status
message back up to the calling procedure if an error is detected.

A more formal definition of exceptions
• The act of generating an exception is called raising or throwing an exception.

• The act of responding to an exception is called catching an exception, and the code
that handles an exception is called exception-handling code or just an exception
handler.

Handling different types of exceptions
• Depending on exactly what event causes an exception, a program may need to take

different actions.

• An exception raised when disk space is exhausted needs to be handled quite
differently from an exception that’s raised if you run out of memory, and both of these
exceptions are completely different from an exception that arises when a divide-by-zero
error occurs.

• One way to handle these different types of exceptions is to globally record an error
message indicating the cause of the exception, and have all exception handlers
examine this error message and take appropriate action. In practice, a different method
has proved to be much more flexible.

Exceptions in Python
• An exception is an object generated automatically by Python functions with a raise

statement.

• After the object is generated, the raise statement, which raises an exception, causes
execution of the Python program to proceed in a manner different from what would
normally occur.

• Instead of proceeding with the next statement after the raise or whatever generated the
exception, the current call chain is searched for a handler that can handle the generated
exception.

• If such a handler is found, it’s invoked and may access the exception object for more
information.

• If no suitable exception handler is found, the program aborts with an error message.

Types of Python exceptions
• The Python exception set is hierarchically structured, as reflected by the indentation in

this list of exceptions.

• Each type of exception is a Python class, which inherits from its parent exception type.

• This hierarchy is deliberate: Most exceptions inherit from Exception, and it’s strongly
recommended that any user-defined exceptions also subclass Exception, not
BaseException.

Raising exceptions
• Error-checking code built into Python detects that the second input line requests an

element at a list index that doesn’t exist and raises an IndexError exception.

Catching and handling exceptions
• By defining appropriate exception

handlers, you can ensure that commonly
encountered exceptional circumstances
don’t cause the program to fail; perhaps
they display an error message to the user
or do something else, perhaps even fix
the problem, but they don’t crash the
program.

Where to use exceptions
• Exceptions are natural choices for handling almost any error condition.

• It’s an unfortunate fact that error handling is often added when the rest of the program is
largely complete, but exceptions are particularly good at intelligibly managing this sort
of after-the-fact error-handling code (or, more optimistically, when you’re adding more
error handling after the fact).

• Exceptions are also highly useful in circumstances where a large amount of processing
may need to be discarded after it becomes obvious that a computational branch in your
program has become untenable.

Context managers using the with
keyword
• Some situations, such as reading files, follow a predictable pattern with a set beginning

and end.

• In the case of reading from a file, quite often the file needs to be open only one time:
while data is being read.

• Then the file can be closed.

• In terms of exceptions, you can code this kind of file access like this:

Context managers using the with
keyword
• Python 3 offers a more generic way of handling situations like this: context managers.

• Context managers wrap a block and manage requirements on entry and departure from
the block and are marked by the with keyword.

• File objects are context managers, and you can use that capability to read files:

Custom Exceptions

Summary
• Python’s exception-handling mechanism and exception classes provide a rich system to

handle runtime errors in your code.

• By using try, except, else, and finally blocks, and by selecting and even creating the
types of exceptions caught, you can have very fine-grained control over how exceptions
are handled and ignored.

• Python’s philosophy is that errors shouldn’t pass silently unless they’re explicitly silenced.

• Python exception types are organized in a hierarchy because exceptions, like all objects
in Python, are based on classes.

Chapter 15

This chapter covers
• Defining classes

• Using instance variables and @property

• Defining methods

• Defining class variables and methods

• Inheriting from other classes

• Making variables and methods private

• Inheriting from multiple classes

Defining classes
• A class in Python is effectively a data type.

• All the data types built into Python are classes, and Python gives you powerful tools to
manipulate every aspect of a class’s behavior.

• You define a class with the class statement:

• Create a new object of the class type (an instance of the class) by calling the class name
as a function:

Example class
• Class instances can be used as

structures or records.

• Unlike C structures or Java classes, the
data fields of an instance don’t need to
be declared ahead of time; they can be
created on the fly.

• The following short example defines a
class called Circle, creates a Circle
instance, assigns a value to the radius
field of the circle, and then uses that
field to calculate the circumference of
the circle

Instance variables
• Take a look at the Circle class again, radius is an instance variable of Circle instances.

• That is, each instance of the Circle class has its own copy of radius, and the value stored
in that copy may be different from the values stored in the radius variable in other
instances.

• In Python, you can create instance variables as necessary by assigning to a field of a
class instance:

• If the variable doesn’t already exist, it’s created automatically, which is how __init__
creates the radius variable.

Methods
• A method is a function associated with a particular class.

• You’ve already seen the special __init__ method, which is called on a new instance when
that instance is created.

Class variables
• A class variable is a variable associated with a class, not an instance of a class, and is

accessible by all instances of the class.

• A class variable might be used to keep track of some class-level information, such as
how many instances of the class have been created at any point.

• A class variable is created by an assignment in the class body, not in the __init__
function.

Static methods and class methods
• You can invoke static methods even though no instance of that class has been created,

although you can call them by using a class instance.

• To create a static method, use the @staticmethod decorator.

Static methods and class methods
• Class methods are similar to static methods in that they can be invoked before an object

of the class has been instantiated or by using an instance of the class.

• But class methods are implicitly passed the class they belong to as their first parameter,
so you can code them more simply, as here.

Try This
• Write a class method similar to total_area() that returns the total circumference of all

circles.

Inheritance
• Parent and children relationship.

• Also known as superclass and subclass.

Square class
• Properties x and y are the coordinates of the Square object to be drawn on canvas.

Circle class
• Circle class also have coordinates x and y.

Shape class
• Move all common properties to a more generic class.

• This class will be the parent (superclass).

Shape class (updated)
• Make Square class inherits from Shape class by pass the superclass’s name in the

bracket.

• The call superclass’s init method to initialize it.

Circle class (updated)
• Do the same thing to Circle class.

Try This
• Rewrite the code for a Rectangle class to inherit from Shape. Because squares and

rectangles are related, would it make sense to inherit one from the other? If so, which
would be the base class, and which would inherit?

• How would you write the code to add an area() method for the Square class? Should the
area method be moved into the base Shape class and inherited by circle, square, and
rectangle? If so, what issues would result?

Inheritance with class and instance
variables
• Inheritance allows an instance to inherit

attributes of the class.

• Instance variables are associated with object
instances, and only one instance variable of a
given name exists for a given instance.

Private variables and methods
• A private variable or private method is one that can’t be seen outside the methods of

the class in which it’s defined.

• Private variables and methods are useful for two reasons:
• They enhance security and reliability by selectively denying access to important or

delicate parts of an object’s implementation,
• and they prevent name clashes that can arise from the use of inheritance.

• A class may define a private variable and inherit from a class that defines a private
variable of the same name, but this doesn’t cause a problem, because the fact that the
variables are private ensures that separate copies of them are kept.

• Any method or instance variable whose name begins—but doesn’t end—with a double
underscore (__) is private; anything else isn’t private.

Mine class with private variables

Try This
• Modify the Rectangle class’s code to make the dimension variables private. What

restriction will this modification impose on using the class?

Using @property for more flexible
instance variables
• Python allows you as the programmer to access instance variables directly, without the

extra machinery of the getter and setter methods often used in Java and other object-
oriented languages.

• This lack of getters and setters makes writing Python classes cleaner and easier, but in
some situations, using getter and setter methods can be handy.

• The answer is to use a property.

• A property combines the ability to pass access to an instance variable through methods
like getters and setters and the straightforward access to instance variables through dot
notation.

Using @property for more flexible
instance variables
• To create a property, you use the property decorator with a method that has the

property’s name.

Scoping rules and namespaces for class
instances
• When you’re in a method of a class, you have direct

access to the local namespace (parameters and
variables declared in the method), the global
namespace (functions and variables declared at the
module level), and the built-in namespace (built-in
functions and built-in exceptions). These three
namespaces are searched in the following order:
local, global, and built-in.

Scoping rules and namespaces for class
instances
• You also have access through the self variable to the

instance’s namespace (instance variables, private
instance variables, and superclass instance
variables), its class’s namespace (methods, class
variables, private methods, and private class
variables), and its superclass’s namespace
(superclass methods and superclass class variables).

• These three namespaces are searched in the order
instance, class, and then superclass.

Destructors and memory management
• You’ve already seen class initializers (the __init__ methods).

• A destructor can be defined for a class as well.

• Python provides automatic memory management through a reference-counting
mechanism.

• That is, it keeps track of the number of references to your instance; when this number
reaches zero, the memory used by your instance is reclaimed, and any Python objects
referenced by your instance have their reference counts decremented by one.

• You almost never need to define a destructor

Multiple inheritance
• Python places no such restrictions on multiple inheritance.

• A class can inherit from any number of parent classes in the same way that it can inherit
from a single parent class.

• In the simplest case, none of the involved classes, including those inherited indirectly
through a parent class, contains instance variables or methods of the same name.

HTML Classes

Summary
• Defining a class in effect creates a new data type.

• __init__ is used to initialize data when a new instance of a class is created, but it isn’t a
constructor.

• The self parameter refers to the current instance of the class and is passed as the first
parameter to methods of a class.

• Static methods can be called without creating an instance of the class, so they don’t
receive a self parameter.

• Class methods are passed a cls parameter, which is a reference to the class, instead of
self.

Summary
• All Python methods are virtual. That is, if a method isn’t overridden in the subclass or

private to the superclass, it’s accessible by all subclasses.

• Class variables are inherited from superclasses unless they begin with two underscores
(__), in which case they’re private and can’t be seen by subclasses. Methods can be
made private in the same way.

• Properties let you have attributes with defined getter and setter methods, but they still
behave like plain instance attributes.

• Python allows multiple inheritance, which is often used with mixin classes.

Chapter 16

This chapter covers
• Understanding regular expressions

• Creating regular expressions with special characters

• Using raw strings in regular expressions

• Extracting matched text from strings

• Substituting text with regular expressions

What is a regular expression?
• A regular expression (regex) is a way of recognizing and often extracting data from

certain patterns of text.

• A regex that recognizes a piece of text or a string is said to match that text or string.

• A regex is defined by a string in which certain characters (the so-called metacharacters)
can have a special meaning, which enables a single regex to match many different
specific strings.

Example
• Here’s a program with a regular

expression that counts how many lines
in a text file contain the word hello.

• A line that contains hello more than
once is counted only once.

Regular expressions with special
characters
• The previous example has a small flaw: It counts how many lines contain "hello" but

ignores lines that contain "Hello" because it doesn’t take capitalization into account.

• One way to solve this problem would be to use two regular expressions—one for "hello"
and one for "Hello"—and test each against every line.

• A better way is to use the more advanced features of regular expressions.

Regular expressions and raw strings
• A raw string looks similar to a normal string except that it has a leading r character

immediately preceding the initial quotation mark of the string.

• Here are some raw strings:

r"Hello"

r"""\tTo be\n\tor not to be"""

r'Goodbye’

r'''12345'''

Extracting matched text from strings
• One of the most common uses of regular expressions is to perform simple pattern-

based parsing on text.

surname, firstname middlename: phonenumber

Try This
• Making international calls usually requires a + and the country code.

• Assuming that the country code is two digits, how would you modify the code above to
extract the + and the country code as part of the number? (Again, not all numbers have
a country code.)

• How would you make the code handle country codes of one to three digits?

Substituting text with regular
expressions
• In addition to extracting strings from text, you can use Python’s regex module to find

strings in text and substitute other strings in place of those that were found.

Try This
• In the previous activity, you extended a phone-number regular expression to also

recognize a country code.

• How would you use a function to make any numbers that didn’t have a country code
now have +1 (the country code for the United States and Canada)?

Phone-Number Normalizer

Summary
• For a complete list and explanation of the regex special characters, refer to the Python

documentation.

• In addition to the search and sub methods, many other methods can be used to split
strings, extract more information from match objects, look for the positions of substrings
in the main argument string, and precisely control the iteration of a regex search over an
argument string.

• Besides the \d special sequence, which can be used to indicate a digit character, many
other special sequences are listed in the documentation.

• There are also regex flags, which you can use to control some of the more esoteric
aspects of how extremely sophisticated matches are carried out.

Chapter 17

This chapter covers
• Treating types as objects

• Using types

• Creating user-defined classes

• Understanding duck typing

• Using special method attributes

• Subclassing built-in types

Types are objects, too
• This example is the first time you’ve seen the built-in type function in Python.

• It can be applied to any Python object and returns the type of that object.

• In this example, the function tells you that 5 is an int (integer) and that ['hello',
'goodbye'] is a list—things that you probably already knew.

Types are objects, too
• The object returned by type is an object whose type happens to be <class 'type’>; you

can call it a type object.

• A type object is another kind of Python object who's only outstanding feature is the
confusion that its name sometime causes.

Using types
• Now that you know that data types can be represented as Python type objects, what

can you do with them?

• You can compare them, because any two Python objects can be compared.

Types and user-defined classes
• The most common reason to be interested in the types of

objects, particularly

• instances of user-defined classes, is to find out whether a
particular object is an instance of a class.

• After determining that an object is of a particular type, the
code can treat it appropriately.

What is a special method attribute?
• A special method attribute is an attribute of a Python class with a special meaning to

Python.

• It’s defined as a method but isn’t intended to be used directly as such.

• Special methods aren’t usually directly invoked; instead, they’re called automatically by
Python in response to a demand made on an object of that class.

• Perhaps the simplest example is the __str__ special method attribute.

• If it’s defined in a class, any time an instance of that class is used where Python requires a
user-readable string representation of that instance, the __str__ method attribute is

• invoked, and the value it returns is used as the required string.

Example

Subclassing from built-in types
• Instead of creating a class for a typed list from scratch, as you did in the previous

examples, you can subclass the list type and override all the methods that need to be
aware of the allowed type.

• One big advantage of this approach is that your class has default versions of all list
operations because it’s a list already.

• The main thing to keep in mind is that every type in Python is a class, and if you need a
variation on the behavior of a built-in type, you may want to consider subclassing that
type.

Summary
• Python has the tools to do type checking as needed in your code, but by taking

advantage of duck typing, you can write more flexible code that doesn’t need to be as
concerned with type checking.

• Special method attributes and subclassing built-in classes can be used to add list-like
behavior to user-created classes.

• Python’s use of duck typing, special method attributes, and subclassing makes it
possible to construct and combine classes in a variety of ways.

Chapter 18

This chapter covers
• Defining a package

• Creating a simple package

• Exploring a concrete example

• Using the __all__ attribute

• Using packages properly

What is a package?
• A module is a file containing code.

• A module defines a group of usually related Python functions or other objects.

• The name of the module is derived from the name of the file.

• A package is a directory containing code and possibly further subdirectories.

• A package contains a group of usually related code files (modules).

• The name of the package is derived from the name of the main package directory.

• Packages are a natural extension of the module concept and are designed to handle
very large projects.

• Just as modules group related functions, classes, and variables, packages group related
modules.

A first example

Proper use of packages
• Packages shouldn’t use deeply nested directory structures. Except for absolutely huge

collections of code, there should be no need to do so. For most packages, a single top-
level directory is all that’s needed. A two-level hierarchy should be able to effectively
handle all but a few of the rest. As written in The Zen of Python, by Tim Peters (see
appendix A), “Flat is better than nested.”

• Although you can use the __all__ attribute to hide names from from ... import * by not
listing those names, doing so probably is not a good idea, because it’s inconsistent. If
you want to hide names, make them private by prefacing them with an underscore.

Create a Package

Summary
• Packages let you create libraries of code that span multiple files and directories.

• Using packages allows better organization of large collections of code than single
modules would allow.

• You should be wary of nesting directories in your packages more than one or two levels
deep unless you have a very large and complex library.

Chapter 19

This chapter covers
• Managing various data types—strings, numbers, and more

• Manipulating files and storage

• Accessing operating system services

• Using internet protocols and formats

• Developing and debugging tools

• Accessing PyPI (a.k.a. “The Cheese Shop”)

• Installing Python libraries and virtual environments using pip and venv

“Batteries included”: The standard
library
• In Python, what’s considered to be the library consists of several components, including

built-in data types and constants that can be used without an import statement, such as
numbers and lists, as well as some built-in functions and exceptions.

• The largest part of the library is an extensive collection of modules.

• If you have Python, you also have libraries to manipulate diverse types of data and files,
to interact with your operating system, to write servers and clients for many internet
protocols, and to develop and debug your code.

String services modules
Description and possible usesModules

Compare with string constants, such as digits or whitespace; format
strings (see chapter 6)

string

Search and replace text using regular expressions (see chapter 16)re

Interpret bytes as packed binary data, and read and write structured
data to/from files

struct

Use helpers for computing deltas, find differences between strings or
sequences, and create patches and diff files

difflib

Wrap and fill text, and format text by breaking lines or adding spacestextwrap

Data types modules
Description and possible usesModules

Date, time, and calendar operationsdatetime,
calendar

Container data typesc

Allows creation of enumerator classes that bind symbolic names to
constant values

enum

Efficient arrays of numeric valuesarray

Event schedulersched

Synchronized queue classqueue

Shallow and deep copy operationscopy

Data pretty printerpprint

Support for annotating code with hints as to the types of objects,
particularly of function parameters and return values

typing

Numeric and mathematical modules
Description and possible usesModules

Numeric abstractbase classesnumbers

Mathematical functions for real and complex numbersmath, cmath

Decimal fixed-point and floating-point arithmeticdecimal

Functions for calculating mathematical statisticsstatistics

Rational numbersfractions

Synchronized queue classqueue

Generate pseudorandom numbers and choices, and shuffle
sequences

random

Functions that create iterators for efficient loopingitertools

Higher-order functions and operations on callable objectsfunctools

Standard operators as functionsoperator

File and storage modules
Description and possible usesModules

Perform common pathname manipulationsos.path

Deal with pathnames in an object-oriented waypathlib

Iterate over lines from multiple input streamsfileinput

Compare files and directoriesfilecmp

Generate temporary files and directoriestempfile

Use UNIX-style pathname and filename pattern handlingglob, fnmatch

Gain random access to text lineslinecache

Read and write CSV filescsv

Work with a DB-API 2.0 interface for SQLite databasessqlite3

Work with archive files and compressionszlib, gzip, bz2,
zipfile, tarfile

Operating system modules
Description and possible usesModules

Miscellaneous operating system interfacesos

Core tools for working with streamsio

Time access and conversionstime

Powerful command-line option parseroptparse

Logging facility for Pythonlogging

Portable password inputgetpass

Terminal handling for character-cell displayscurses

Access to underlying platform’s identifying dataplatform

Foreign function library for PythonCtypes

Waiting for I/O completionselect

Modules supporting internet protocols
and formats

Description and possible usesModules

Low-level networking interface and SSL wrapper for socket
Objects

socket, ssl

Email and MIME handling packageemail

JSON encoder and decoderjson

Parse HTML and XHTMLhtml.parser,
html.entities

Common Gateway Interface supportcgi, cgitb

Open and parse URLsurllib.request,
urllib.parse

Framework for network serverssocketserver

HTTP servershttp.server

Development, debugging, and runtime
modules

Description and possible usesModules

Documentation generator and online help systempydoc

Test interactive Python examplesdoctest

Unit testing frameworkunittest

Utility functions for teststest.support

Python debuggerpdb

Trace or track Python statement executiontrace

System-specific parameters and functionssys

Garbage collector interfacegc

Inspect live objectsinspect

Installing Python libraries using pip
and venv
• Python offers pip as the current solution to both problems. pip tries to find the module in

the Python Package index (more about that soon), downloads it and any dependencies, and
takes care of the installation.

• The basic syntax of pip is quite simple.

• To install the popular requests library from the command line, for example, all you have to
do is

python3.6 -m pip install requests

python3.6 -m pip install –-upgrade requests

python3.6 -m pip install requests==2.11.1

python3.6 -m pip install --user requests

Virtual environments
• You have another, better option if you need to avoid installing libraries in the system Python.

• This option is called a virtual environment (virtualenv).

• A virtual environment is a self-contained directory structure that contains both an installation
of Python and its additional packages.

• Because the entire Python environment is contained in the virtual environment, the libraries
and modules installed there can’t conflict with those in the main system or in other virtual
environments, allowing different applications to use different versions on both Python and
its packages.

python3.6 -m venv test-env

test-env\Scripts\activate.bat

pip install requests

PyPI (a.k.a. “The Cheese Shop”)
• Although distutils packages get the job done, there’s one catch: You have to find the correct

package, which can be a chore.

• And after you’ve found a package, it would be nice to have a reasonably reliable source
from which to download that package.

• To meet this need, various Python package repositories have been made available over the
years.

• Currently, the official (but by no means the only) repository for Python code is the Python
Package Index, or PyPI (formerly also known as “The Cheese Shop,” after the Monty Python
sketch) on the Python website.

• You can access it from a link on the main page or directly at https://pypi.python.org.

• PyPI is the logical next stop if you can’t find the functionality you want with a search of the
standard library.

Summary
• Python has a rich standard library that covers more common situations than many other

languages, and you should check what’s in the standard library carefully before looking
for external modules.

• If you do need an external module, prebuilt packages for your operating system are the
easiest option, but they’re sometimes older and often hard to find.

• The standard way to install from source is to use pip, and the best way to prevent
conflicts among multiple projects is to create virtual environments with the venv module.

• Usually, the logical first step in searching for external modules is the Python Package
Index (PyPI).

Chapter 20

This chapter covers
• Moving and renaming files

• Compressing and encrypting files

• Selectively deleting files

The problem: The never-ending flow of
data files
• Many systems generate a continuous series of data files.

• These files might be the log files from an e-commerce server or a regular process; they
might be a nightly feed of product information from a server; they might be automated
feeds of items for online advertising; historical data of stock trades; or they might come
from a thousand other sources.

• They’re often flat text files, uncompressed, with raw data that’s either an input or a
byproduct of other processes.

• In spite of their humble nature, however, the data they contain has some potential value,
so the files can’t be discarded at the end of the day—which means that every day, their
numbers grow.

• Over time, files accumulate until dealing with them manually becomes unworkable and
until the amount of storage they consume becomes unacceptable.

Scenario: The product feed from hell
• A typical situation example is a daily feed of product data.

• This data might be coming in from a supplier or going out for online marketing, but the
basic aspects are the same.

• The simplest thing you might do is mark the files with the dates on which they were
received and move them to an archive folder.

• That way, each new set of files can be received, processed, renamed, and moved out of
the way so that the process can be repeated with no loss of data.

• After a few repetitions, the directory structure might look something like this:

How to solve it?
• First, you need to rename the files so that the current date is added to the filename.

• To do that, you need to get the names of the files you want to rename; then you need
to get the stem of the filenames without the extensions.

• When you have the stem, you need to add a string based on the current date, add the
extension back to the end, and then actually change the filename and move it to the
archive directory.

More organization
• The solution to storing files described in the previous section works, but it does have

some disadvantages.

• For one thing, as the files accumulate, managing them might become a bit more
trouble, because over the course of a year, you’d have 365 sets of related files in the
same directory, and you could find the related files only by inspecting their names.

• If the files arrive more frequently, of course, or if there are more related files in a set, the
hassle would be even greater.

A better solution
• To mitigate this problem, you can change the way you archive the files.

• Instead of changing the filenames to include the dates on which they were received,
you can create a separate subdirectory for each set of files and name that subdirectory
after the date received.

• Your directory structure might look like this (next slide)

Compressing files
• If the space that the files are taking up is an issue, the next approach you might

consider is compressing them.

Grooming files @ Deleting
• The process of removing files after they reach a certain age is sometimes called

grooming.

• Suppose that after several months of receiving a set of data files every day and
archiving them in a zip file, you’re told that you should retain only one file a week of the
files that are more than one month old.

• The simplest grooming script removes any files that you no longer need - in this case,
all but one file a week for anything older than a month old.

Summary
• The pathlib module can greatly simplify file operations such as finding the root and

extension, moving and renaming, and matching wildcards.

• As the number and complexity of files increase, automated archiving solutions are vital,
and Python offers several easy ways to create them.

• You can dramatically save storage space by compressing and grooming data files.

Chapter 21

This chapter covers
• Using ETL (extract-transform-load)

• Reading text data files (plain text and CSV)

• Reading spreadsheet files

• Normalizing, cleaning, and sorting data

• Writing data files

Welcome to ETL
• The need to get data out of files, parse it, turn it into a useful format, and then do

something with it has been around for as long as there have been data files.

• In fact, there is a standard term for the process: extract-transform-load (ETL).

• The extraction refers to the process of reading a data source and parsing it, if necessary.

• The transformation can be cleaning and normalizing the data, as well as combining,
breaking up, or reorganizing the records it contains.

• The loading refers to storing the transformed data in a new place, either a different file
or a database.

Text encoding: ASCII, Unicode, and
others
• The Unicode encoding called UTF-8 accepts the basic ASCII characters without any change

but also allows an almost unlimited set of other characters and symbols according to the
Unicode standard.

• Even with Unicode, there’ll be occasions when your text contains values that can’t be
successfully encoded.

open('test.txt', 'wb').write(bytes([65, 66, 67, 255, 192,193]))

open('test.txt', errors='ignore').read()

open('test.txt', errors='replace').read()

open('test.txt', errors='surrogateescape').read()

open('test.txt', errors='backslashreplace').read()

Unstructured text
• Unstructured text files are the easiest sort of data to read but the hardest to extract

information from.

• Processing unstructured text can vary enormously, depending on both the nature of the
text and what you want to do with it, so any comprehensive discussion of text
processing is beyond the scope of this course.

Delimited flat files
• This file is a simple example of temperature data in delimited format:

Example solution
• Whatever character is being used as the delimiter, if you know what character it is, you

can write your own code in Python to break each line into its fields and return them as a
list.

• In the previous case, you can use the string split() method to break a line into a list of
values:

The csv module
• The csv module is a perfect case of Python’s “batteries included” philosophy.

• The csv module has been tested and optimized, and it has features that you probably
wouldn’t bother to write if you had to do it yourself, but that are truly handy and time-
saving when available.

Reading a csv file as a list of
dictionaries
• In the preceding examples, you got a row of data back as a list of fields.

• This result works fine in many cases, but sometimes it may be handy to get the rows
back as dictionaries where the field name is the key.

• For this use case, the csv library has a DictReader, which can take a list of fields as a
parameter or can read them from the first line of the data. If you want to open the data
with a DictReader, the code would look like this:

Excel files
• The other common file format that I discuss in this chapter is the Excel file, which is the

format that Microsoft Excel uses to store spreadsheets.

• As it happens, Python’s standard library doesn’t have a module to read or write Excel
files.

• To read that format, you need to install an external module.

• Fortunately, several modules are available to do the job.

• For this example, you use one called OpenPyXL, which is available from the Python
package repository.

• You can install it with the following command from a command line

$pip install openpyxl

Data cleaning
• One common problem you’ll encounter in processing text-based data files is dirty data.

• By dirty, it means that there are all sorts of surprises in the data, such as null values,
values that aren’t legal for your encoding, or extra whitespace.

• The data may also be unsorted or in an order that makes processing difficult.

• The process of dealing with situations like these is called data cleaning.

Data
cleaning
steps

Cleaning

Sorting

Try This
• How would you handle the fields with 'Missing’ as possible values for math

calculations? Can you write a snippet of code that averages one of those columns?

• What would you do with the average column at the end so that you could also report
the average coverage?

• In your opinion, would the solution to this problem be at all linked to the way that the
'Missing' entries were handled?

Data
cleaning
issues and
pitfalls

Beware of whitespace and null
characters.

Beware punctuation.

Break down and debug the
steps.

Writing data files
• These files may be used as input for other applications and analysis, either by people or

by other applications.

• Usually, you have a particular file specification listing what fields of data should be
included, what they should be named, what format and constraints there should be for
each, and so on.

Packaging data files
• If you have several related data files, or if your files are large, it may make sense to

package them in a compressed archive.

• Although various archive formats are in use, the zip file remains popular and almost
universally accessible to users on almost every platform.

Weather Observations

Summary
• ETL (extract-transform-load) is the process of getting data from one format, making sure that

it’s consistent, and then putting it in a format you can use. ETL is the basic step in most data
processing.

• Encoding can be problematic with text files, but Python lets you deal with some encoding
problems when you load files.

• Delimited or CSV files are common, and the best way to handle them is with the csv module.

• Spreadsheet files can be more complex than CSV files but can be handled much the same
way.

• Currency symbols, punctuation, and null characters are among the most common data
cleaning issues; be on the watch for them.

• Presorting your data file can make other processing steps faster.

Chapter 22

This chapter covers
• Fetching files via FTP/SFTP, SSH/SCP, and HTTPS

• Getting data via APIs

• Structured data file formats: JSON and XML

Fetching files
• Before you can do anything with data files, you have to get them.

• Sometimes, this process is very easy, such as manually downloading a single zip archive,
or maybe the files have been pushed to your machine from somewhere else.

• Quite often, however, the process is more involved.

• Maybe a large number of files needs to be retrieved from a remote server, files need to
be retrieved regularly, or the retrieval process is sufficiently complex to be a pain to do
manually.

• In any of those cases, you might well want to automate fetching the data files with
Python.

Using Python to fetch files from an FTP
server

Fetching files with SFTP
• If the data requires more security, such as in a corporate context in which business data

is being transferred over the network, it’s fairly common to use SFTP.

• SFTP is a full-featured protocol that allows file access, transfer, and management over a
Secure Shell (SSH) connection.

• Python doesn’t have an SFTP/SCP client module in its standard library, but a
community-developed library called paramiko manages SFTP operations as well as SSH
connections.

Retrieving files over HTTP/HTTPS
• The requests library is by far the easiest and most reliable way to access HTTP/HTTPS

servers from Python code.

• Again, requests is easiest to install with pip install requests.

• The following example code fetches the monthly temperature data for Heathrow
Airport since 1948 - a text file that’s served via a web server.

Fetching data via an API

Structured data formats
• Although APIs sometimes serve plain text, it’s much more common for data served from

APIs to be served in a structured file format.

• The two most common file formats are JSON and XML.

• Both of these formats are built on plain text but structure their contents so that they’re
more flexible and able to store more complex information.

JSON data

Pretty Printing

XML data
• XML (eXtensible Markup Language) has been around since the end of the 20th century.

• XML uses an angle-bracket tag notation similar to HTML, and elements are nested
within other elements to form a tree structure.

• XML was intended to be readable by both machines and humans, but XML is often so
verbose and complex that it’s very difficult for people to understand.

• Nevertheless, because XML is an established standard, it’s quite common to find data in
XML format.

• And although XML is machine-readable, it’s very likely that you’ll want to translate it into
something a bit easier to deal with.

How to read XML data?
• For simple data extraction, the handiest utility I’ve found is a library called xmltodict,

which parses your XML data and returns a dictionary that reflects the tree.

• In fact, behind the scenes it uses the standard library’s expat XML parser, parses your
XML document into a tree, and uses that tree to create the dictionary.

Track Curiosity’s Weather

Summary
• Using a Python script may not be the best choice for fetching files. Be sure to consider

the options.

• Using the requests module is your best bet for fetching files by using HTTP/HTTPS and
Python.

• Fetching files from an API is very similar to fetching static files.

• Parameters for API requests often need to be quoted and added as a query string to the
request URL.

• JSON-formatted strings are quite common for data served from APIs, and XML is also
used.

• Scraping sites that you don’t control may not be legal or ethical and requires
consideration not to overload the server.

Chapter 23

This chapter covers
• Storing data in relational databases

• Using the Python DB-API

• Accessing databases through an Object

• Relational Mapper (ORM)

• Understanding NoSQL databases and how they differ from relational databases

Relational databases
• Relational databases have long been a standard for storing and manipulating data.

• They’re a mature technology and a ubiquitous one.

• Python can connect with a number relational databases, but we don’t have the time or
the inclination to go through the specifics of each one in this course.

• Instead, because Python handles databases in a mostly consistent way, we are going to
illustrate the basics with one of them - sqlite3 - and then discuss some differences and
considerations in choosing and using a relational database for data storages.

The Python Database API
• Python handles SQL database access very similarly across several database

implementations because of PEP-249 (www.python.org/dev/peps/pep-0249/), which
specifies some common practices for connecting to SQL databases.

• Commonly called the Database API or DB-API, it was created to encourage “code that
is generally more portable across databases, and a broader reach of database
connectivity.”

• Thanks to the DB-API, the examples of SQLite that you see in this chapter are quite
similar to what you’d use for PostgreSQL, MySQL, or several other databases.

SQLite: Using the sqlite3 database
• Although it’s not suited for large, high-traffic applications, sqlite3 has two advantages:

• Because it’s part of the standard library, it can be used anywhere you need a database
without worrying about adding dependencies.

• sqlite3 stores all of its records in a local file, so it doesn’t need both a client and server,
which would be the case for PostgreSQL, MySQL, and other larger databases.

• To use a sqlite3 database, the first thing you need is a Connection object.

• Getting a Connection object requires only calling the connect function with the name of file
that will be used to store the data.

import sqlite3

conn = sqlite3.connect("datafile.db")

Making database handling easier with
an ORM
• There are a few problems with the DB-API database client libraries mentioned earlier in this

chapter and their requirement to write raw SQL.
• Different SQL databases have implemented SQL in subtly different ways.
• The second drawback is the need to use raw SQL statements.
• The need to write SQL means that you need to think in at least two languages: Python

and a specific SQL variant.

• Given those issues, people wanted a way to handle databases in Python that was easier to
manage and didn’t require anything more than writing regular Python code.

• The solution is an Object Relational Mapper (ORM), which converts, or maps, relational
database types and structures to objects in Python.

• Two of the most common ORMs in the Python world are the Django ORM and SQLAlchemy,
although of course there are many others.

SQLAlchemy
• SQLAlchemy is the other big-name ORM in the Python space.

• SQLAlchemy’s goal is to automate redundant database tasks and provide Python
object-based interfaces to the data while still allowing the developer control of the
database and access to the underlying SQL.

• You can install SQLAlchemy in your environment with pip:

pip install sqlalchemy

NoSQL databases
• Although relational databases are all about normalizing data within related tables, other

approaches look at data differently.

• Quite commonly, these types of databases are referred to as NoSQL databases, because
they usually don’t adhere to the row/column/table structure that SQL was created to
describe.

• Rather than handle data as collections of rows, columns, and tables, NoSQL databases can
look at the data they store as key-value pairs, as indexed documents, and even as graphs.

• Many NoSQL databases are available, all with somewhat different ways of handling data.

• In general, they’re less likely to be strictly normalized, which can make retrieving information
faster and easier.

Create a Database

Summary
• Python has a Database API (DB-API) that provides a generally consistent interface for

clients of several relational databases.

• Using an Object Relational Mapper (ORM) can make database code even more
standard across databases.

• Using an ORM also lets you access relational databases through Python code and
objects rather than SQL queries.

• Tools such as Alembic work with ORMs to use code to make reversible changes to a
relational database schema.

• Key:value stores such as Redis provide quick in-memory data access.

• MongoDB provides scalability without the strict structure of relational databases.

Chapter 24

This chapter covers
• Python’s advantages for handling data

• Jupyter Notebook

• pandas

• Data aggregation

• Plots with matplotlib

Python’s advantages for exploring data
• Python has become one of the leading languages for data science and continues to

grow in that area.

• However, Python isn’t always the fastest language in terms of raw performance.

• Conversely, some data-crunching libraries, such as NumPy, are largely written in C and
heavily optimized to the point that speed isn’t an issue.

• In addition, considerations such as readability and accessibility often outweigh pure
speed; minimizing the amount of developer time needed is often more important.

• Python is readable and accessible, and both on its own and in combination with tools
developed in the Python community, it’s an enormously powerful tool for manipulating
and exploring data.

Python can be better than a spreadsheet
• Spreadsheets have been the tools of choice for ad-hoc data manipulation for decades.

• People who are skilled with spreadsheets can make them do truly impressive tricks:
spreadsheets can combine different but related data sets, pivot tables, use lookup tables to
link data sets, and much more.

• But although people everywhere get a vast amount of work done with them every day,
spreadsheets do have limitations, and Python can help you go beyond those limitations;

• Most spreadsheet software has a row limit—currently, about 1 million rows.

• Spreadsheets are two-dimensional grids, rows and columns, or at best stacks of grids,
which limits the ways you can manipulate and think about complex data.

• With Python, you can code your way around the limitations of spreadsheets and manipulate
data the way you want.

Python and pandas
• One of the now-standard tools for handling data in Python – pandas - was created to

automate the boring heavy lifting of handling data sets.

• pandas was created to make manipulating and analyzing tabular or relational data easy
by providing a standard framework for holding the data, with convenient tools for
frequent operations.

• As a result, it’s almost more of an extension to Python than a library, and it changes the
way you can interact with data.

• The plus side is that after you grok how pandas work, you can do some impressive
things and save a lot of time.

Installing pandas
• pandas is easy to install with pip.

• It’s often used along with matplotlib for plotting, so you can install both tools from the
command line with this code:

pip install pandas matplotlib

Next steps –
let’s crunch
it!

Plotting data Visualization

Data
aggregation and

manipulation

Merging data frames.
Selecting data.
Grouping and aggregation.

Data cleaning
Loading and saving data with pandas.
Data cleaning with a data frame.

Data frames A data frame is a two-dimensional grid, rather similar to a relational
database table except in memory.

Summary
• Python offers many benefits for data handling, including the ability to handle very large

data sets and the flexibility to handle data in ways that match your needs.

• Jupyter notebook is a useful way to access Python via a web browser, which also makes
improved presentation easier.

• pandas is a tool that makes many common data-handling operations much easier,
including cleaning, combining, and summarizing data.

• pandas also makes simple plotting much easier.

