lverson

Trainer’d hroduction

e Name: Asmaliza Ahzan @ Emma
* Email: asmaliza@iverson.com.my
e Senior Technical Consultant with Iverson Associates since 2012

* Been in training industry since 2008, graduated with MEng in Computer Systems
Engineering from University of Queensland, Australia

» Domain would be programming languages, application development, data
analytics/science, machine learning and artificial intelligence.

Now it your turn...

* Name

Job Title/Role/Designation

» Experiencing with data analytics/science tools, process, projects etc.

Expectations from this course

 Misc.

dome Logirticy

 Class hours: 9am - 5pm
« Monday - Friday
* 1 hour lunch break

* Morning and afternoon breaks

Agenula — Day 1

» About Python

Getting Started

The Quick Python Overview

The absolute basics

Lists, tuples and sets

Agenda — Day 2

* Strings

* Dictionaries

Control Flow

Functions

Modules and Scoping Rules

Agenula — Day 3

* Python Programs

» Using the Filesystem
* Reading and Writing Files

» Exceptions

Agenda — Day 4

 Classes and Object-Oriented
Programming

» Regular Expressions
» Data Types as Objects
» Packages

* Using Python Libraries

Agenula — Day 3

* Basic File Wrangling

* Processing Data Files

Data Over the Network

Saving Data

Exploring Data

Training Objectives

« Master the fundamentals of writing Python * Use Python to read and write files

scripts « Make their code robust by handling errors

* Learn core Python scripting elements such and exceptions properly

as variables and flow control structures + Work with the Python standard library

e Discover how to work with lists and

« Explore Python's object-oriented features
sequence data

, _ N Search text using regular expressions
« Write Python functions to facilitate code

reuse

About Python

Thiy chaptler cover

* Why use python?

» What python does well?
» What python does not do as well?
* Why learn python 37

Why Use Python?

* Easytolearn and use

* Mature and supportive Python community

» Hundreds of Python libraries and frameworks

* Versatility, efficiency, reliability, and speed

* Big Data, Machine Language and Cloud Computing
* First-choice Language

« The flexibility of Python language

« Use of Python in academics

 Automation

Bcwkf,rouhd

* Python is a modern programming language developed by Guido van Rossum in the
1990s (and named after a famous comedic troupe).

« Although Python isn't perfect for every application, its strengths make it a good choice

for many situations.

What Python Doer Wekl

* Python is easy to use

Python is expressive

Python is readable

Python is complete - “batteries included”

Python is cross-platform

Python is free

What Python Doesnt Do Well

« Python isn't the fastest language

Python doesn’t have the most libraries

Python doesn't check variable types at compile time

Python doesn’t have much mobile support

Python doesn’t use multiple processors well

Why Learn Python 37

* Python has been around for a number of years and has evolved over that time.

« Python 3, originally whimsically dubbed Python 3000, is notable because it's the first
version of Python in the history of the language to break backward compatibility.

« What this means is that code written for earlier versions of Python probably won't run on
Python 3 without some changes.

« Why learn Python 37 Because it's the best Python so far.

Summary

» Python is a modern, high-level language with dynamic typing and simple, consistent
syntax and semantics.

* Python is multiplatform, highly modular, and suited for both rapid development and
large-scale programming.

* It's reasonably fast and can be easily extended with C or C++ modules for higher
speeds.

» Python has built-in advanced features such as persistent object storage, advanced hash
tables, expandable class syntax, and universal comparison functions.

* Python includes a wide range of libraries such as numeric processing, image
manipulation, user interfaces, and web scripting.

* It's supported by a dynamic Python community.

Cetting dtarted

Thiy chaptler cover

* Installing Python

Using IDLE and the basic interactive mode

Writing a simple program

Using Visual Studio Code

Using Python shell

detup the Brwirorument

hutalling Python

* Installer can be downloaded from https://www.python.org/downloads/

e Python’ . I -

About Downloads Documentation Community Success Stories News Events

Download the latest version for Windows

Download Python 3.12.1

Looking for Python with a different 0S? Python for Windows,

Linux/UNIX, macOS, Other

Want to help test development versions of Python 3.13? Prereleases,

Docker images

Baric nberactive MNode

* Launch from terminal/command prompt.

- Command Prompt - python X =R

Microsoft Windows [Version 10.0.22631.3007]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Asmaliza>python

Python 3.12.1 (tags/v3.12.1:2305ca5, Dec 7 2023, 22:03:25) [MSC v.1937 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.

>>>

IDLE

* IDLE is the built-in development environment for Python.

A

N

Cila CAN Cha DinlAnRe \WEnAAia Haln
r She vebug Uptions vWinaow €

e cait ONS p
(tags/v3.12.1:2305ca5, Dec 7 2023, 22:03:25) [MSC v.1937 64 bit (AMD64)] on win32

Python 3.12.1
"credits"™ or "license()" for more information.

Type "help", "copyright",
>>>

Virual Studio Code

Download the installer from Download Visual Studio Code
https://code.visuaIstudio.com/ Free and built on open source. Integrated Git, debugging and extensions.

Once installed, add the
Python plugin.

4 Windows 4 .deb 4 Mac
Windows 10, 11 Debian, Ubuntu Red Hat, Fedora, SUSE macOS 10.15+

User Installer (G20 deb [B el chp | Apple siicon | Universal
System Installer [rpm . _
E N targ (2] (D) Rl el iz lApoi ikcor)
Sna Snap Store
cu o) i

cu

Simple Program

« In VS Code, create new file hello.py

* Type below codes;

print("Hello World")

» To execute the codes, click on the Play button (right-top) >

PROBLEMS TERMINAL QUTPUT DEBUG CONSOLE

: /pythoncodes/basic/hello.py
Hello World

Uring python »hell

| & *Python 3.7.2 Shell*

File Edit Shell Debug Options Window Help

Python 3.7.2 (tags/v3.7.2:9a3ffc049%92, Dec 23 2018, 22:20:52) [MSC v.1916 32 bit (In
Type "help"™, "copyright"™, "credits™ or "license()" for more information.

>>> help()

Welcome to Python 3.7's help utility!

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at https://docs.python.org/3.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, symbols, or topics, type
"modules", "keywords", "symbols", or "topics". Each module also comes
with a one-line summary of what it does; to list the modules whose name
or summary contain a given string such as "spam", type "modules spam”.

ASSERTION
ASSTGNMENT

ATTRIBUTEMETHODS

ATTRIBUTES

AUGMENTEDASSTIGNMENT

BASICMETHODS
BINARY

BITWISE

BOOLEAN
CALLABLEMETHODS
CALLS

CLASSES
CODEOBJECTS
COMPARISON
COMPLEX
CONDITIONAL
CONTEXTMANAGERS
CONVERSTIONS

Python help

DELETION
DICTIONARIES
DICTIONARYLITERALS
DYNAMICFEATURES
ELLIPSIS
EXCEPTIONS
EXECUTION
EXPRESSIONS
FLOAT
FORMATTING
FRAMEOBJECTS
FRAMES
FUNCTIONS
IDENTIFIERS
IMPORTING
INTEGER
LISTLITERALS
LISTS

LOOPING
MAPPINGMETHODS
MAPPINGS
METHODS
MODULES
NAMESPACES
NONE
NUMBERMETHODS
NUMBERS
OBJECTS
OPERATORS
PACKAGES

POWER
PRECEDENCE
PRIVATENAMES
RETURNING
SCOPING
SEQUENCEMETHODS

SHIFTING

SLICINGS
SPECIALATTRIEBUTES
SPECIALIDENTIFIERS
SPECIALMETHODS
STRINGMETHODS
STRINGS
SUBSCRIPTS
TRACEBACKS
TRUTHVALUE
TUPLELITERALS
TUPLES
TYPEOBJECTS

TYPES

UNARY

UNICODE

Python help - Funcliony

help> FUNCTIONS

Functions
b o A .

Function objects are created by function definitions. The only
operation on a function object is to call it: "func(argument-lis-

There are really two flavors of function objects: built-in funct:
and user-defined functions. Both support the same operation (to
the function), but the implementation is different, hence the
different object types.

See Function definitions for more information.

Related help topics: def, TYPES

Summary

* Installing Python 3 on Windows systems is as simple as downloading the latest installer
from www.python.org and running it. Installation on Linux, UNIX, and Mac systems will

vary.

» Refer to installation instructions on the Python website and use your system’s software
package installer where possible.

« Another installation option is to install the Anaconda (or miniconda) distribution from
https://www.anaconda.com/download/.

 After you've installed Python, you can use either the basic interactive shell (and later,
your favorite editor) or the IDLE integrated development environment.

The Quick Python
Overview

Thiy chapter covers

 Surveying Python

Using built-in data types

Controlling program flow

Creating modules

Using Object-Oriented programming

Python Synophis

« Python has several built-in data types, such as integers, floats, complex numbers, strings,
lists, tuples, dictionaries, and file objects.

« These data types can be manipulated using language operators, built-in functions,
library functions, or a data type’s own methods.

« Programmers can also define their own classes and instantiate their own class instances.

« These class instances can be manipulated by programmer-defined methods, as well as
the language operators and built-in functions for which the programmer has defined the
appropriate special method attributes.

Python Synophis

« Python provides conditional and iterative control flow through an if-elif-else construct
along with while and for loops. It allows function definition with flexible argument-

passing options.
» Exceptions (errors) can be raised by using the raise statement, and they can be caught
and handled by using the try-except-else-finally construct.

* Variables (or identifiers) don't have to be declared and can refer to any built-in data
type, user-defined object, function, or module.

Buill-in Data Types

e Numbers

* Lists

* Tuples

* Strings

* Dictionaries
* Sets

* File Objects

Nwrmbers

« Python's four number types are integers, floats, complex numbers, and Booleans:

* Integers—1, -3, 42, 355, 888888888888888, -7777777777 (integers aren't limited in size

except by available memory)

e Floats—3.0, 31e12, -6e-4

« Complex numbers—3 + 2j,-4- 2}, 4.2 + 6.3]

* Booleans—True, False

9
106
% & §
12
13

define a variable age and assign value 17
age = 17

print age to output
print(age)

Nwrmbers

1 # define a variable age and assign value 17
2 age = 17

3

4 # print age to output

5 print(age)

6

7 # numbers

8 print(5 + 2 - 3 * 2)

9 print(5 / 2) # floating 2.5
1@ print(5 / 2.8) # also floating 2.5
11 print(5 // 2) # integer result 2
12 print(3000000000) # a large number
13 print(3000000000 * 3)
14 print(3000000000 * 3.0)
15 print(2.0e-8) # scientific

String

* String processing is one of Python's strengths.

* Strings can be delimited by single (' '), double (" "), triple single (""" '), or triple double
(""" """) quotations and can contain tab (\t) and newline (\n) characters.

* Strings are also immutable.

1 # strings

2 strl = "A string in double quotes can contain ‘'single quote' characters."
3 str2 = 'A string in single quotes can contain "double quote" characters.’
4 str3 = "''\tA string which starts with a tab; ends with a newline character.\n'"’
5 str4 = """This is a triple double quoted string, the only kind that can

6 contain real newlines."""

7

g8 print(strl)

9 print(str2)

18 print(str3)

11 print(str4)

String

* Strings have several methods to work 13 # define string s
with their contents, and the re library 18 % = "Jive and 16t A% Ntlive'
. : 15 print(x)
module also contains functions for #e
working with strings. 17 # split

18 y = x.split()
19 print(y)

21 # replace
22 z = x.replace(" let \t \tlive"”, "enjoy life")
23 print(z)

25 import re

26 regexpr = re.compile(r"[\t]+")
27 w = regexpr.sub(" ", x)

28 print(w)

String

* The print function outputs strings. Other Python data types can be easily converted to
strings and formatted.

30 # formatted output

31 e = 2.718

42 W E [, THE™, 3, 918, [aT; e, 65,)

33 print("The constant e is:", e, "and the list x 1s:", Xx)
34

35 print("the value of %s 1s: %.2f" % ("e", e))

Y 2

« Alist can contain a mixture of other types as
its elements, including strings, tuples, lists,
dictionaries, functions, file objects, and any
type of number.

« Alist can be indexed from its front or back.
You can also refer to a subsegment, or slice,
of a list by using slice notation.

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

lists and slicing
x = ["first", "second", "third", "fourth"]

display all values in list
print(x)

display the first value in list
print(x[@])

#slicing
print(x[1:-1])
print(x[@:3])
print(x[-2:-1])
print(x[:3])
print(x[-2:])

Tuples

« Tuples are similar to lists but are immutable - that is, they can’t be modified after they've
been created.

« Alist can be converted to a tuple by using the built-in function tuple and vice-versa
using the built-in function list.

W o~ o B wNn

A list can be converted to a tuple by using the built-in function tuple
x = [1, 2, 3, 4]

print(x)

print(tuple(x))

Conversely, a tuple can be converted to a list by using the built-in function list
x = (1, 2, 3, 4)

print(x)

print(list(x))

Dictionaries

« Python's built-in dictionary data type provides associative array functionality
implemented by using hash tables.

* The built-in len() function returns the number of key-value pairs in a dictionary.
* The del statement can be used to delete a key-value pair.

« As is the case for lists, several dictionary methods (clear, copy, get, items, keys, update,
and values) are available

« Keys must be of an immutable type B, including numbers, strings, and tuples.

« Values can be any kind of object, including mutable types such as lists and dictionaries.

Dictionaries

1 # dictionaries

2 x=-41: "one", 2: "two"}

3 print(x)

4

5 # add key-value pair

6 x["first"] = "one"

7 print(x)

8

9 # get all keys
106 keys = list(x.keys())
11 print(keys)
12
13 # get value
14 print(x[1])
15
16 # optional user-defined value if key-value pair not found
17 print(x.get(1, "not available"))
18 print(x.get(4, "not available"))

dehy

« Asetin Pythonis an unordered collection of
objects, used in situations where membership

and uniqueness in the set are the main things you # sets
need to know about that object. x = set([1, 2, 3, 1, 3, 5])
print(x)

without any associated values. # in operator
print(1 in x)

X
2
3
« Sets behave as collections of dictionary keys 4
5
6
7 print{4.dn)

File Objects

Afile is accessed through # open file for reading and writing

a Python file object. Fi = openCimyEale®, “Wr)
write into file
f.write("First line with necessary newline character\n”
f.write("Second line to write to the file\n")
f.close()

4

open file for reading only
f = open("myfile"”, "r")

linel = f.readline()
line2 = f.readline()
f.close()

print(linel, line2)

Controf Flow Structures

« Python has a full range of structures to control code execution and program flow,
including common branching and looping structures.

« Python has several ways of expressing Boolean values; the Boolean constant False, O, the
Python nil value None, and empty values (for example, the empty list [] or empty string
"") are all taken as False.

* The Boolean constant True and everything else is considered True.

« The comparison operators (<, <=, ==, >, >=, I=/is, is not, in, not in) and the logical
operators (and, not, or), which all return True or False.

The if-elij-ele Statement

e The block of code after the first True condition (of an if or an 1 x=5
elif) is executed. 2
N , 3 vi1if x < 5
* If none of the conditions is True, the block of code after the 4 y = -1
else is executed.
5 Z =5
« The elif and else clauses are optional B, and there can be 5 - elif x > 5
any number of elif clauses. 7 y =1
* No explicit delimiters, such as brackets or braces, are 8 z = 31
necessary. 9 velse:
o All these statements must be at the same level of 10 y =8
indentation. 11 z =160
12
13 print(x, vy, z)

The while Loop

» The while loop is executed as long as the 1 wu, v, X, y =80, 0, 100, 3@
condition (which here is x > y) is True. 2

3 while X > y

4 Uu=u-+y

5 X = X -

6 if x <y + 2:

7 V =V + X

8 X =0

9 else:
106 V=V+Vy+2
s e | X=X -y - 2
12 print(u. v)

The lfor l_oop

« The for loop is simple but powerful because it's possible to iterate over any iterable
type, such as a list or tuple.

« Unlike in many languages, Python's for loop iterates over each of the items in a
sequence (for example, a list or tuple), making it more of a foreach loop.

% R]

00~ O v B W

item list = [3, "stringl", 23, 14.0, "string2", 49, 64, 70]

for x in item_list:
if not isinstance(x, int):
continue
iF not =% 7
print("found an integer divisible by seven: %d" % X)
break

Functlion Dwam

« Functions are defined by using the
def statement.

1 # syntax
) 2 # def name(paraml, param2,...):
* The return statement is what a
3 # body
function uses to return a value. 4
) 5 # function that will return the factorial
« This value can be of any type. If no 6 alef Eact(h):
return statement is encountered, 7 """ Return the factorial of the given number ""*
, . 8 r=1
Python’s None value is returned. :
- while n > ©:
« Function arguments can be entered 19 P=F=h
. . 11 n=n-1
either by position or by name 5 it |
(keyword).s 13
14 print(fact(4))

Exceptions

* Exceptions (errors) can be caught

. 1 v class EmptyFileError(Exception):
and handled by using the try-except- -
else-ﬂnally Compound statement. j ::Llena?mes.: [“'my'Fllel‘.', "nonExistent”, "emptyFile", "myfile2"]
or file in filenames:
. 5 try:
* This statement can also catch and 6 £ = open(file, 'r')
. . 7 line = f.readline()
handle exceptions you define and : h e e
raise yourself. 9 f.close()
10 raise EmptyFileError("%s: is empty"” % file)
. . / 11 except IOError as error:
¢ Any exceptlon that Isn't Caught 12 print("%s: could not be opened: %s" % (file, error.strerror)
causes the prog ram tO eXit. 13 except.EmptyFileEr‘r‘or‘ as error:
14 print(error)
15 else:
16 print("%s: %s" % (file, f.readline()))
17 finally:
18 print("Done processing”, file)

Context handfing wring the with keyword

« A more streamlined way of encapsulating the try-except-finally pattern is to use the with
keyword and a context manager.

« One benefit of context managers is that they may (and usually do) have default cleanup
actions defined, which always execute whether an exception occurs.

filename = "myfile.txt"
with open(filename, "r") as f:
for line in f:
print(f)

= W p

MNodule Creation

* It's easy to create your own modules, which can be imported and used in the same way
as Python'’s built-in library modules.

* The example in this listing is a simple module with one function that prompts the user to
enter a filename and determines the number of times that words occur in this file.

wo module. Contains function: words_occur()
interface functions
def words_occur():

W o0~ G B w R

N NNRRRRBRRBRRBRR
N P ®WoHNoOu bhwiNR®

if _name__ == '__main__':

"""words_occur() - count the occurrences of words in a file.
Prompt user for the name of the file to use.
file _name = input("Enter the name of the file: ")
Open the file, read it and store its words in a list.
f = open(file_name, 'r')
word_list = f.read().split()
f.close()
Count the number of occurrences of each word in the file.
occurs_dict = {}
for word in word_list:
increment the occurrences count for this word
occurs_dict[word] = occurs_dict.get(word, ©) + 1
Print out the results.
print("File %s has %d words (%d are unique)" \
% (file_name, len(word_list), len(occurs_dict)))
print(occurs_dict)

words_occur()

Objwf—Orimtwt Progrwdhg

« Python provides full support for OOP.

* Listing is an example that might be the start of a simple shapes module for a drawing
program.

Classes are defined by using the class keyword.

The instance initializer method (constructor) for a class is always called __init__

Methods, like functions, are defined by using the def keyword.

W oo < oo B w M

N RN N NN RMNRNRB R B 2 2 R e e e
OV B W NREO®OWOLDSNOOUV B WNRE®

sh module. Contains classes Shape, Square and Circle
class Shape:
"""Shape class: has method move
def init (self, x, y):
self.x = x
self.y = y
def move(self, deltaX, deltaY):
self.x = self.x + deltaX
self.y = self.y + deltaY
class Square(Shape):
"""Square Class:inherits from Shape
def __init__ (self, side=1, x=0, y=0):
Shape. init_ (self, x, y)
self.side = side
class Circle(Shape):
"""Circle Class: inherits from Shape and has method are
pi = 3.14159
def __init (self, r=1, x=0, y=0):
Shape. init_ (self, x, y)
self.radius = r
def area(self):
"""Circle area method: returns the area of the circ
return self.radius * self.radius * self.pi
def _ str_ (self):
return "Circle of radius %s at coordinates (%d, %d)
% (self.radius, self.x, self.y)

mn

Summary

« This chapter is a rapid and very high-level overview of Python; the following chapters
provide more detail. This chapter ends the book's overview of Python.

* You may find it valuable to return to this chapter and work through the appropriate
examples as a review after you read about the features covered in subsequent chapters.

« If this chapter was mostly a review for you, or if you'd like to learn more about only a few
features, feel free to jump around, using the index or table of contents.

* You should have a solid understanding of the Python features in this chapter before
skipping ahead to part 4.

The Abdolute Bapich

Thiy chapter covers

* Indenting and block structuring

« Differentiating comments
 Assigning variables
 Evaluating expressions

» Using common data types
» Getting user input

 Using correct Pythonic style

Indentation and block Mructuring

» Python differs from most other programming languages because it uses whitespace and
indentation to determine block structure.

This 1s Python code. (Yea!)

Oy B W M=

=
=
|_I.
|_I

3 D

n =

TN
* ®

3

=
1

=3
i

=

Advantages of ndentalion

* It's impossible to have missing or extra braces. You never need to hunt through your
code for the brace near the bottom that matches the one a few lines from the top.

« The visual structure of the code reflects its real structure, which makes it easy to grasp
the skeleton of code just by looking at it.

« Python coding styles are mostly uniform. In other words, you're unlikely to go crazy from
dealing with someone’s idea of aesthetically pleasing code. Everyone's code will look
pretty much like yours.

Digjerentiating commenty

« For the most part, anything following a # symbol in a Python file is a comment and is
disregarded by the language.

« The obvious exception is a # in a string, which is just a character of that string.

9 # Assign 5 to x

18 X =5

11 x = 3 # Now x is 3

12 x = "# This is not a comment™

Variables and asdighmenty

* In Python, unlike in many other computer languages, neither a variable type declaration
nor an end-of-line delimiter is necessary.

« The line is ended by the end of the line.
 Variables are created automatically when they're first assigned.

* Python variables can be set to any object, whereas in C and many other languages,
variables can store only the type of value they're declared as.

14 x = "Hello"
15 print(x)

16

17 x =5

18 print(x)

« The following is perfectly legal Python code

Ex,wmiom

 Arithmetic and similar expressions.

« Standard rules of arithmetic precedence apply. If you'd left out the parentheses in the
last line, the code would've been calculated as x + (y / 2).

[
~<
1]

L

3 z=(X%*+¥y)J 2

Tey This

* In your editor, create some variables.

« What happens when you try to put spaces, dashes, or other nonalphanumeric characters
in the variable name?

« Play around with a few complex expressions, suchasx =2 +4*5-6/3. Use
parentheses to group the numbers in different ways and see how the result changes
compared with the original ungrouped expression.

dfring)

* Python, like most other programming languages, indicates strings using double quotes.

39 X = "Hello, World"

40

41 x = "\tThis string starts with a \"tab\"."

42 x = "This string contains a single backslash(\\)."
43

44 x = "Hello, World"

45 x = 'Hello, World'

46

47 x = "Don't need a backslash"

48 x = 'Can\'t get by without a backslash’
49 X = "Backslash wvour \" character!™

Nwrmbers

« Python offers four kinds of numbers: integers, floats, complex numbers, and Booleans.

print(5 + 2 - 3 * 2)

print(5 / 2) # floating 2.5

108 print(5 / 2.8) # also floating 2.5
11 print(5 // 2) # integer result 2
12 print(3000000000) # a large number

4 # print age to output
5 print(age)

6

7 # numbers

8

9

Buill-in nuumeric Jrnctiony

e abs * max
e div * min

e mod * oct

» float * pow
* hex * round

* int

Advanced numeric punctions

« from math import *

acos asin atan ceil CoS
cosh e exp fabs floor
frmod frexp hypot |dexp log
log10 mod P pOW sin
sinh sqrt tan tanh

Tey This

* In your editor, create some string and number variables (integers, floats, and complex
numbers).

* Experiment a bit with what happens when you do operations with them, including
across types.

« Can you multiply a string by an integer, for example, or can you multiply it by a float or
complex number?

» Also load the math module and try a few of the functions; then load the cmath module
and do the same. What happens if you try to use one of those functions on an integer or
float after loading the cmath module? How might you get the math module functions

back?

The None Vafue

« Python has a special basic data type that defines a single special data object called

None.

« Asthe name suggests, None is used to represent an empty value.

* None is often useful in day-to-day Python programming as a placeholder to indicate a
point in a data structure where meaningful data will eventually be found, even though

that data hasn't yet been calculated.

CeHting input prom the wher

« Use the input() function to get input from the user.

getting input from user
name = input("Name? ")
print(name)

age = int(input("Age? "))
print(age)

(o) T V.0 B - VS R 6 B

Tey This

« Experiment with the input() function to get string and integer input. Using code similar
to the previous code, what is the effect of not using int() around the call to input()for

integer input?

« Can you modify that code to accept a float - say, 28.57

« What happens if you deliberately enter the wrong type of value? Examples include a
float in which an integer is expected and a string in which a number is expected - and

vice versa.

Buifl-in operator)

* Python provides various built-in operators, from the standard (+, *, and so on) to the
more esoteric, such as operators for performing bit shifting, bitwise logical functions,
and so forth.

» Most of these operators are no more unique to Python than to any other language.

Badic Python »ty(e

Situation

Suggestion

Example

Module/package names

Short, all lowercase,
underscores only if needed

Imp, sys

Function names

All lowercase,
underscores_for_readability

Function names

Variable names All lowercase, my_var
underscores_for_readability
Indentation Four spaces per level, no
tabs
Comparison Don’t compare explicitly to | if my_var:

True or False

if not my_var:

Quick Check

« Which of the following variable and function names do you think are not good Pythonic
style? Why?

bar() varName VERYLONGVARNAME | foobar

longvarname foo_bar() really_very_long_var_n
ame

Summary

* The basic syntax summarized above is enough to start writing Python code.

» Python syntax is predictable and consistent.

» Because the syntax offers few surprises, many programmers can get started writing code
surprisingly quickly.

Thiy chapter covers

* Manipulating lists and list indices

Modifying lists

Sorting

* Using common list operations

Handling nested lists and deep copies

Using tuples

Creating and using sets

Listh ave (ike arvay)

« Alistin Python is an ordered collection of objects.

« You create a list by enclosing a comma-separated list of elements in square brackets.

* Python lists can contain different types of elements; a list element can be any Python
object.

* Probably the most basic built-in list function is the len() function, which returns the
number of elements in a list

O oo JdJdowun b WM

This assigns a three-element list to x
x = [1, 2, 3]

First element is a number, second is a string,
third is another list.
x = [2, "two", [1, 2, 3]]

get the length/size of list
print(len(x))

List inudices

» Python list index start with O.

« If indices are negative numbers, they indicate positions counting from the end of the list,
with -1 being the last position in the list, -2 being the second-to-last position, and so
forth.

11 x = ["First™, "second™, "third™, "fourth™]
12 print(x[@e])

13 print(x[2])

14

15 a = x[-1]

16 print(a)

17 print(x[-2])

dicing

 Creating a subset from the list.

19 x = ["first", "second", "third", "fourth"]
20 y = x[1:-1]
21 print(y)

22

23 y = x[0:3]
24 print(y)

25

26 y = x[-2:-1]
27 print(y)

28

29 print(x[:3])
30 print(x[2:])

Tey This

« Using what you know about the len() function and list slices, how would you combine
the two to get the second half of a list when you don't know what size it is?

« Experiment in the Python shell to confirm that your solution works.

”odiwihﬁ(, Lirxth

« Add 36
37 # append
) Append 38 x[lsnlx):] = [5; 6, 7]
« Remove 39 print(x)
40
* Extend 41 x[:e] = [-1, @] # append from front
e Insert 42 x[1:-1] = [] # remove/clear
43
e Delete 44 x = [1, 2, 3, 4]
45 y = [5; 6; 7]
* Reverse i8 anpentilyd G R L
47 x.extend(y) 11 3. 8, 4, 5 5. 7]
48 x.insert(2, "hello")
49

Co Aal ~ 11

Tey This

» Suppose that you have a list 10 items long.

« How might you move the last three items from the end of the list to the beginning,
keeping them in the same order?

* Example:
nums =1[1,2,3,4,5,6,7,8,9,10]
» Expected result:

result =1[8,9,10,1,2,3,4,5, 6, 7]

Sorﬂhﬁa Lirxts

* Lists can be sorted by using the built-in Python sort method.

» To sort a list without changing the original list, you have two options.
 use the sorted() built-in function,
* make a copy of the list and sort the copy

« According to the built-in Python rules for comparing complex objects, the sublists are
sorted first by ascending first element and then by ascending second element.

O oo dJ o B WN K

o RN W o VA Y QR W Y
oOwuv bk WNEO®

> X

= = X #*

x 3k

>

in-place sorting (change the list)
= [3, 8, 4, 0, 2, 1]

.sort()

make copy then sort
= [2, 4, 1, 3]
= x[:]

.sort()

strings
= ["Life", "Is", "Enchanting"]

.sort()

list of list
= [13; 81; [2; 81, [2; 31; [4; 11; 13, 2]

.sort()

The Horted() jrnction

« Python also has the built-in function sorted(), which returns a sorted list from any
iterable.

* sorted() uses the same key and reverse parameters as the sort method.

18 # sorted

19 x=[4; 35 1; 2Z2)

20 y = sorted(x)

21

22 z = sorted(x, reverse=True)

Tey This

» Suppose that you have a list in which each elementis in turn a list:
[[1,2,3],[2,1,3], 14,0, 1]].

* If you wanted to sort this list by the second element in each list so that the result would

be [[4,0, 1],[2, 1, 3],[1, 2, 3]], what function would you write to pass as the key value to
the sort() method?

Other comumon (irt operationy

* List membership with the in operator

* List concatenation with the + operator

* List initialization with the * operator

 List minimum or maximum with min and max
* List search with index

e List matches with count

W o~ O R WM

MM MN N R R 222 R e e
W N R ®& WO SN On bk whN R ®

in operator

print(3
print(3
print(3

in [1, 3, 4, 5])
in [lanenJ "tWO", "'thl"‘EE"])
not in ["one", "two", "three"])

+ operator

print(z

= [l, 2.1 3] + [4, 5])

* operator

Z
Z

[3,

[None] * 4

1] * 2

min and max
print(min([3, 7, ©, -2, 11]))
print(max([3, 7, ©, -2, 11]))

index
% = [
print(x

count
X=[1,
print(x

3, "five", 7, -2]
.index(7))

2.2, 3,8, 2, 5]
.count(2))

Tey This

* What would be the result of len([[1,2]] * 3)7?

« What are two differences between using the in operator and a list's index() method?

» Which of the following will raise an exception?:

miﬂ(["a”, ”b”, //C//]),

!

max([1, 2, "three”]); [1, 2, 3].count("one”)

Tey This

* If you have a list x, write the code to safely remove an item if - and only if - that value is in
the list.

« Modify that code to remove the element only if the item occurs in the list more than
once.

Nested (ixty and deep copies

e Lists can be nested.

« One application of nesting is to represent two-dimensional matrices.

« The members of these matrices can be referred to by using two-dimensional indices.

1 m= [[ey 1, 21, [2e, 11, 12|, |26, 21, 22]]
2

3 print(m[@])

4 print(m[@][1])

5 print(m[2])

6

print(m[2][2])

Tuples

« Tuples are data structures that are very similar to lists, but they can’t be modified; they
can only be created.

* Tuples are so much like lists that you may wonder why Python bothers to include them.

« The reason is that tuples have important roles that can’t be efficiently filled by lists, such
as keys for dictionaries.

Tupler Baprich

 Creating a tuple is similar to creating a list: assign a 1 =8 B8; "¢
sequence of values to a variable. p)
« Alistis a sequence that's enclosed by [and]; a tuple is 3 print(x[2])
a sequence that's enclosed by (and) 4 print(x[1:])
5 print(max(x))
6 print(min(x))
7 print(5 in x)
8 print(5 not in x)
9
18 x[2] = 'd’
11
12 print{x + x)
13 print(2 * x)

dehy

« Asetin Python is an unordered collection of objects used when membership and
uniqueness in the set are main things you need to know about that object.

* Like dictionary keys (discussed in chapter 7), the items in a set must be immutable and
hashable.

« This means that ints, floats, strings, and tuples can be members of a set, but lists,
dictionaries, and sets themselves can't.

dehy

* Create 1 % = Sy, 2, '3, 1; 3, -51)
. Add 5
3 X.add(6)
* Remove 4
* In operator 5 X.remove(5)
6
« Convert listto set 7 print(1 in x)
* Logical operations 8 print(4 in x)
9
18 ¥ = set{[1, 7, 8, 9])
11
12 print(x | y)
13 print(x & y)
14 print(x ~ y)

Tey This

* If you were to construct a set from the following list, how many elements would the set
have?:[1,2,5,1,0,2,3,1,1,(1,2,3)]7

Summary

* Lists and tuples are structures that embody the idea of a sequence of elements, as are
strings.

* Lists are like arrays in other languages, but with automatic resizing, slice notation, and
many convenience functions.

« Tuples are like lists but can't be modified, so they use less memory and can be
dictionary keys (see chapter 7).

» Sets are iterable collections, but they're unordered and can't have duplicate elements.

Thiy chapter covers

« Understanding strings as sequences of characters

 Using basic string operations

* Inserting special characters and escape sequences
« Converting from objects to strings

« Formatting strings

* Using the byte type

Mringd ap requences of character)

 For the purposes of extracting characters and
substrings, strings can be considered to be
sequences of characters, which means that
you can use index or slice notation.

* Python strings can’t be modified.

53
54
55
56
57
58
59
60
61
62

X = "Hello, World"

print(x
print(x
print(x

[0])
[<11)

(1:])

X = "Goodbye\n"

% = ¥x{i-1]

print(x)
print(len("Goodbye"))

Badic Aﬂ'ihﬁ operaf o)

* The simplest (and probably most common) way to combine Python strings is to use the
string concatenation operator +

64 x = "Hello " + "World"
65 print(x)

66

67 prige(s * KM

Jpecial charactery and epcape
deuence 0000

Escape Sequence Character represented

\'
X
\\
\a
\b
\f
\n
\r
\t
\v

Single-quote character
Double-quote character
Backlash character

Bell character

Backspace character
Formfeed character
Newline character
Carriage-return character
Tab character

Vertical tab character

dring methody

* join()

* split()

(o T+ o T Y o T R R VS O S T

S
= ®

join
print(.join(["join", "puts", "spaces", "between", "elements"]))
print("::".join(["Separated”, "with", "colons"]))

e m

print("".join(["Separated”, "by", "nothing"]))
split
X = "You\t\t can have tabs\t\n \t and newlines \n\n mixed in"

print(x.split())

X = "Mississippi"
print(x.split("ss"))

Quick Check

* How could you use split and join to change all the whitespace in string x to dashes, such
as changing “this is a test” to “this-is-a-test”?

Conwerting rtringsy o numbers

« Use the functions int and float to convert
strings to integer or floating-point numbers,
respectively.

* If they're passed a string that can't be
interpreted as a number of the given type,

these functions raise a ValueError exception.

W 00~ & Uyl bW M

ol =
N ®

¥ = Float('"123.456")
y = float('xxyy') # ValueError
octal

print(int('1eeee’, 8))

binary
print{int('1631", 2))

hex
print(int('ff', 16))

Quick Check

* Which of the following will not be converted to numbers, and why?
int('al’)
int("12G', 16)
float("12345678901234567890")
int("12*2")

Gdﬁhﬁa rid of extra whitedpace

* strip()
o Istrip()
* rstrip()
print(x.strip())

print(x.lstrip())
print(x.rstrip())

X = "www.python.org"
print(x.strip("w"))

00O~ v B W KN

X = " Hello, World\t\t "

Quick Check

* If the string x equals "(name, date) \n", which of the following would return a string
containing "name, date"?

x.rstrip("),")
x.strip("),\n")
x.strip("\n)(,")

dMring Hearching

e find()
e rfind() 1 x = "Mississippi"”
* index() : . .
o 3 print(x.find("ss"))
* rindex() 4 print(x.find("zz"))
* count() 5 print(x.find("ss", 3))
* startswith() & print(x.find("ss", @, 3))
. endswith() 7 print(x.rfind("ss"))
8 print(x.count("ss"))
9 print(x.startswith("Miss"))
18 print(x.endswith("pi"))

NOMWM Afrw

 Strings are immutable, but string objects have several methods that can operate on that
string and return a new string that's a modified version of the original string.

 This provides much the same effect as direct modification for most purposes.

1 x = "Mississippi”
2 print(x.replace("ss", "+++"))

l“lodiwing, Mringd with (irt
mahip wlation)

« Turn the string into a list of characters, do whatever you want, and then turn the resulting
list back into a string.

W 00~ 3 1 A w N

A el e pad g A
nh W ERE®

x = "Missisgsippi™
print(x.replace("ss",

text = "Hello, World"
wordList = list(text)
print(wordList)

wordList[6:] = []
print(wordList)

wordList.reverse()
print(wordList)

I'I+++II :

text = "".join(wordList)

print(text)

Quick Check

* What would be a quick way to change all punctuation in a string to spaces”?

Conwerting prom objecty to rtrings

* In Python, almost anything can be converted to some sort of a string representation by
using the built-in repr function.

print(repr([1, 2, 3]))

%= |[1]
X.append(2)

print(x)
X.append([3, 4])
print(x)

0O~ v W N

Uring the jormal method

W o0~ & kWM

[
w M= ®

print("{@} is the {1} of {2}".format("Ambrosia", "food", "the gods"))

print("{{Ambrosia}} is the {@} of {1}".format("food", "the gods"))

print("{food} is the food of {user}".format(food="Ambrosia"”, user="the gods"))

print("{@} is the food of {user[1]}".format("Ambrosia", user=["men", "the gods", "others"]))
print("{@:18} is the food of gods".format("Ambrosia"))

print("{@:{1}} is the food of gods".format("Ambrosia"”, 10))

print("{food:{width}} is the food of gods".format(food="Ambrosia", width=10))

print("{@:>10} is the food of gods".format("Ambrosia™))
print("{@:&>10} is the food of gods".format("Ambrosia"))

Formatting string with £

15
16
17
18
19
20
21
22

print("%s is the %s of %s" % ("Ambrosia", "food", "the gods"))
print("%s 1s the %s of %s" % ("Nectar", "drink", "gods"))
print("%s is the %s of the %s" % ("Brussels Sprouts"”, "food", "foolish"))

X = [1; 2; "three™]
print("The %s contains: %s" % ("list", x))

Uring jormalting yequences

 All formatting sequences are substrings contained in the string on the left side of the
central %.

« Each formatting sequence begins with a percent sign and is followed by one or more

characters that specify what is to be substituted for the formatting sequence and how
the substitution is to be accomplished.

25 # seqguences
26 print("Pi is <%-6.2f>" % 3.14159) # use of the formatting sequence: %-6.2f

Nared parameters and pormatting
Aefuences 00000

28 # named parameters
29 pumdict = {"e’: 2.718, “pi': 3.14159}
30 print("%(pi).2f - %(pi).4f - %(e).2f" % num_dict)

Quick Check

« What would be in the variable x after the following snippets of code have executed?

x="%2f"%1.1111
x="%(a).2f" %{'a"1.1111}
X ="%(a).08f" %{'a"1.1111}

Sﬂ'ihﬁ(, nd u'pofai o

» Starting in Python 3.6, there's a way to create string constants containing arbitrary values,
which is called string interpolation.

« String interpolation is a way to include the values of Python expressions inside literal

strings.

« These f-strings, as they're commonly called because they are prefixed with f, use a syntax
similar to that of the format method, but with a little less overhead.

32
33
34
35

string interpolation

value = 42

message = f"The answer is {value}"
print(message)

Summary

« Python strings have powerful text-processing features, including searching and
replacing, trimming characters, and changing case.

 Strings are immutable; they can’t be changed in place.
» Operations that appear to change strings actually return a copy with the changes.

* The re (regular expression) module has even more powerful string capabilities, which
are discussed in chapter 16.

Thiy chapter covers

« Defining a dictionary
 Using dictionary operations

» Determining what can be used as a key

Creating sparse matrices

Using dictionaries as caches

Trusting the efficiency of dictionaries

What) a dibﬂonarlj?

 Dictionaries access values by means of integers, strings, or other Python objects called
keys, which indicate where in the dictionary a given value is found.

« Both lists and dictionaries can store objects of any type.

» Values stored in a dictionary are not implicitly ordered relative to one another because
dictionary keys aren't just numbers.

1 # dictionaries
2 ¥ = {1: “one™; 22 T"two'}
3 print(x)

Dictionaries

« Adictionary is a way of mapping from one set of arbitrary objects to an associated but
equally arbitrary set of objects.

20 english_to_french = {}

21 english_to_french['red'] = 'rouge’
22 english_to_french['blue’'] = 'bleu’
23 english_to_french['green'] = 'vert"’

24 print("red is", english_to_french['red'])

Other dictionary operations

Dictionary Explanation
Operation

{} Creates an empty dictionary x ={}
len Returns the number of entries in a dictionary len(x)
keys Returns a view of all keys in a dictionary x.keys()
values Returns a view of all values in a dictionary x.values()
items Returns a view of all items in a dictionary x.items()
del Removes an entry from a dictionary del(x[key])
in Tests whether a key exists in a dictionary 'y'in x
get Returns the value of a key or a configurable x.get('y', None)
default

copy Makes a shallow copy of a dictionary y = x.copy()

Quick Check

« Assume that you have a dictionary x ={'a":1, 'b":2, 'c":3, 'd":4} and a dictionary y = {'a":6,
'e”:5,'f":6}. What would be the contents of x after the following snippets of code have
executed?:

del x['d’]
z = x.setdefault('g’, 7)
x.update(y)

Word cownt iy

26 # word counting

27 sample_string = "To be or not to be"

28 occurrences = {}

29 for word in sample _string.split():

30 occurrences[word] = occurrences.get(word, 0) + 1
31

32 for word in occurrences:
33 print("The word", word, "occurs", occurrences[word], "times in the string")

Whatl can be wred ad a kuﬂ
Pythontype |Immutable? | Hashtable? | Dictionary key? |
int Yes Yes Yes

float Yes Yes Yes
boolean Yes Yes Yes
complex Yes Yes Yes
str Yes Yes Yes
bytes Yes Yes Yes
bytearray No No No
list No No No
tuple Yes Sometimes Sometimes

set No No no

Jparde malvices

* In mathematical terms, a matrix is a two-dimensional grid of numbers, usually written in
textbooks as a grid with square brackets on each side.

 Afairly standard way to represent such a matrix is by means of a list of lists.

* To implement sparse matrices by using dictionaries with tuple indices.

matrix

matrix

[[3, e,

{(9; @):

-
=F

(8, 2);

-2, (@, 3):

11, (1, 1)

9, (2, 1):

-2J ll]J {eJ 9: 3, @], [aJ ?J 9, a]: [QJ @, @: '5]]

75

» 3):

_5}

Ewaew of dickionarie)

* The truth is that the Python dictionary implementation is quite fast.

« Many of the internal language features rely on dictionaries, and a lot of work has gone
into making them efficient.

* Because all of Python's data structures are heavily optimized, you shouldn’t spend much
time worrying about which is faster or more efficient.

* If the problem can be solved more easily and cleanly by using a dictionary than by using
a list, do it that way, and consider alternatives only if it's clear that dictionaries are
causing an unacceptable slowdown.

Summary

 Dictionaries are powerful data structures, used for many purposes even within Python
itself.

* Dictionary keys must be immutable, but any immutable object can be a dictionary key.

« Using keys means accessing collections of data more directly and with less code than
many other solutions.

Controf Flow

Thiy chapter covers

* Repeating code with a while loop

« Making decisions: the if-elif-else statement

* Iterating over a list with a for loop

* Using list and dictionary comprehensions

» Delimiting statements and blocks with indentation

 Evaluating Boolean values and expressions

The while Loo,a

W 00 =1 O 1 B w pd

S e
N R ®

u=u+
X=X -Y
if x <y + 2:
=V + X
= ©
else:
V=V+y+ 2
X=X =y - 2

print(u, v)

WO 00~ & B W=

T e T
w N RO

X =5

i e 5
y = =1
Z =5

elif x > 5
y =1
Z = 11

else:
y = ©
z = 10

print(x, y, z)

The por (oop

item_list = [3, "stringl", 23, 14.0, "string2", 49, 64, 70]

for X in item list:
if not isinstance(x, int):
continue
1f ot % & 7:
print("found an integer divisible by seven: %d" % X)
break

00~ O vl B W N

The range punction

43 # Using the range() function:

44 - for x in range(6):

45 print(x)

46

47 # Using the start parameter:

48 for x in range(2, 6):

49 print(x)

56

51 # Increment the sequence with 3 (default is 1):
52 - for x in range(2, 30, 3):

53 print(x)

54

55 # Print all numbers from @ to 5, and print a message when ti
ended:

56 -~ for x in range(6):

57 print(x)

58 - else:

59 print("Finally finished!")

Quick Check

» Suppose thatyou have a listx =1, 3,5, 0, -1, 3, -2], and you need to remove all negative
numbers from that list. Write the code to do this.

* How would you count the total number of negative numbers in a list
y=11,-1,0]12 5 -9],[-2,-3,0]]?

« What code would you use to print very low if the value of x is below -5, low if it's from -5
up to 0, neutral if it's equal to 0, high if it's greater than O up to 5, and very high if it's
greater than 57

Boolean valued and expresryions

* Python has a Boolean object type that can be set to either True or False. Any expression
with a Boolean operation returns True or False.

* The numbers 0, 0.0, and 0+0j are all False; any other number is True.

The empty string "" is False; any other string is True.

The empty list [] is False; any other list is True.

The empty dictionary {} is False; any other dictionary is True.

The empty set set() is False; any other set is True.

The special Python value None is always False.

Summary

« Python uses indentation to group blocks of code.
« Python has loops using while and for, and conditionals using if-elif-else.
* Python has the Boolean values True and False, which can be referenced by variables.

» Python also considers any O or empty value to be False and any nonzero or nonempty
value to be True.

Thiy chapter covers

« Defining functions
« Using function parameters

» Passing mutable objects as parameters

Understanding local and global variables

Creating and using generator functions

Creating and using lambda expressions

Using decorators

Baric punclion dejinitions

1 # syntax

2 # def name(paraml, param2,...):

3 # body

4

5 # function that will return the factorial
6 def fact(n):

7 """ Return the factorial of the given number """
8 r=1

9 while n > ©:

10 r=r *n
u [| n=n-1

12 retirn r

13

14 print(fact(4))

Function with paramelers

16 # function that will return the power
17 def power(x, y):

18 r=4

19 while y > ©:
20 o=
21 y =y -1
22 return r

23

Funclion with dejawll parameter

function with default par
def power2(x, y=2):

r=1

while y > @:
Sl i
y =y =l

return r

print(power2(3, 3))
print(power2(3))

Nared paromwf exr

26 # function with default param
27 def power2(x, y=2):

28 o

29 while y > ©:
30 r= P ¥y
31 y =y -1
32 return r

33

34 print(power2(3, 3))

35 print(power2(3))

36

37 # named parameters

38 print(power2(v=4. x =2))

Variabfe nurmber) o argument)

40 # varargs
41 def maximum(*numbers):

42 if len(numbers) ==

43 return None

44 else:

45 maxnum = numbers[@]
46 for n in numbers[1:]:
47 if n > maxnum:

48 maxnum = n
49 return maxnum

1%

51 print(maximum(3,2,8))
52 print(maximum(1,5,9,-2,2))

|MW@ number of argumenty

54
55
56
bl
58
59
60
61
62

indefinite number of arguments passed by keyword
def example fun(x,y,**other):
print("x: {@}, v: {1}, keys in ‘other': {2}".format(x,y,list(other.keys())))
other_total = ©
for k in other.keys():
other_total = other_total + other[k]
print("The total of values in 'other' is {@}".format(other_total))

example_fun(2,y="1", foo=3,bar=4)

Nutable objecty ad argumenty

64 # mutable objects as arguments
65 def f(n, listl, list2):

66 listl.append(3)
67 list2 = [4,5,6]
68 n=n+1

69

B X =5

X e 11,21
72 z = [4,5]
13 T,y 5)
74 print(x, y, z) # y 1is modified

Function ap parameter

76 # assigning functions to variables
77 def f_to_kelvin(degrees f):

78 return 273.15 + (degrees_f - 32) * 5 / 9
79

80 def c_to_kelvin(degrees_c):

81 return 272.15 + degrees_c

82

83 abs_temperature = f_to_kelvin
84 print(abs_temperature(32))

85

86 abs_temperature = c_to_kelvin
87 print(abs_temperature(e))

88

89 # place them in a list, tuples or dictionaries
90 t = {'FtoK':f_to_kelvin, "'CtoK':c_to_kelvin}
g1 print(tl"Ftek®]{32))

92 print(t['CtoK'](©))

Lambda Expressions

« lambda expressions are anonymous little functions that you can quickly define inline.

1 ~vt2 = {'FtoK': lambda deg f: 273.15 + (deg f - 32) * 5 / 9,
'CtoK': lambda deg c: 273.15 + deg c}

M

3
4 result = t2['FtoK'](32)
5 print(result)

Cenveralor Wﬂom

« A generator function is a special kind of function that you can use to define your own
iterators.

« When you define a generator function, you return each iteration’s value using the yield
keyword.

» The generator will stop returning values when there are no more iterations, or it
encounters either an empty return statement or the end of the function.

* Local variables in a generator function are saved from one call to the next, unlike in
normal functions

WO 00~ Ovwv BN

v def four():
X =0
while x < 4:
print("in generator, x
yield X
X += 1

foir 1. in four():
print(i)

Decoratory

» A decorator is syntactic

sugar for this process and 1 def decorate(func):
: 2 print("in decorate function, decorating"”, func.__name_)
lets you wrap one function
o , 3 def wrapper_func(*args):
inside another with a one- 4 print("Executing", func.__name_)
line addition. 5 return func(*args)
]) 6 return wrapper_func
* It still gives you exactly the .
same effect as the 8 def myfunction(parameter):
previous code, but the S print(parameter)
resulting code is much 9 : .
] 11 myfunction = decorate(myfunction)
cleaner and easiertoread. 4,
13 myfunction("hello™)

How to whe decoratory?

« Very simply, using a decorator involves two parts: defining the function that will be
wrapping or “decorating” other functions.

« Use an @ followed by the decorator immediately before the wrapped function is
defined.

« The decorator function should take a function as a parameter and return a function.

* Example on next slide.

17
18
19
20
21
22
23
24
25
26
27
28

def decorate(func):
print("in decorate function, decorating”, func.__name_)
def wrapper_func(*args):
print("Executing”, func.__name_)
return func(*args)
return wrapper_func

@decorate
def myfunction(parameter):

print(parameter)

myfunction("hello")

Summary

« External variables can easily be accessed within a function by using the global
statement.

« Arguments may be passed by position or by parameter name.
« Default values may be provided for function parameters.

« Functions can collect arguments into tuples, giving you the ability to define functions
that take an indefinite number of arguments.

« Functions can collect arguments into dictionaries, giving you the ability to define
functions that take an indefinite number of arguments passed by parameter name.

« Functions are first-class objects in Python, which means that they can be assigned to
variables, accessed by way of variables, and decorated.

Thiy chapter covers

« Defining a module

« Writing a first module

* Using the import statement

» Modifying the module search path

* Making names private in modules

* Importing standard library and third-party modules

» Understanding Python scoping rules and namespaces

What » a module?

« Amodule is a file containing code.

* It defines a group of Python functions or other objects, and the name of the module is
derived from the name of the file.

A st modale

 Create a text file called mymath.py, and in that text file, enter the Python code in listing
10.1.

"""mymath - our example math module
pi = 3.14159
def area(r):
"""area(r): return the area of a circle with radius r.
global pi
return(pi * r * r)

¥R wE A

N B W N

To whe the module

* Import the module

» Start using the module

N o bW N R

import mymath
print(mymath.pi)
from mymath import pi

print(pi)

Modufes

« A module is a file defining Python objects.

* If the name of the module file is modulename.py, the Python name of the module is
modulename.

* You can bring a module named modulename into use with the import modulename
statement. After this statement is executed, objects defined in the module can be
accessed as modulename.objectname.

* Specific names from a module can be brought directly into your program by using the
fromm modulename import objectname statement. This statement makes objectname
accessible to your program without your needing to prepend it with modulename, and
it's useful for bringing in names that are often used.

Where To place your own modufes

* Place your modules in one of the directories that Python normally searches for modules.

 Place all the modules used by a Python program in the same directory as the program.

 Create a directory (or directories) to hold your modules, and modify the sys.path
variable so that it includes this new directory (or directories).

Private nwarmed in modules

« The exception is that identifiers in the module beginning with an underscore can't be
imported with from module import *.

By starting all internal names (that is, names that shouldn’t be accessed outside the
module) with an underscore, you can ensure that from module import * brings in only
those names that the user will want to access.

1 """modtest: our test module"""
2 def f(x):

3 return X

a4

5 def _g{x):

6 return X

-

8 a =4

S b o= 2

Library and third-party modufes

« After you've installed Python, all the functionality in these library modules is available to
you.

« All that's needed is to import the appropriate modules, functions, classes, and so forth
explicitly, before you use them.

* Available third-party modules and links to them are identified in the Python Package
Index (pyPl), which will be discussed in chapter 19.

* You need to download these modules and install them in a directory in your module
search path to make them available for import into your programs.

Python Acoping rules and namespaces

A namgspace m. Python is g mapping from S
identifiers to objects - that is, how Python keeps namespace R
track of what variables and identifiers are active
. Built-in
aﬂd What they pOIﬂt tO. functions
Glokal i
NamespaEce \\\&\
Maodule Madule
functions variables
Local ™,
nameaspace R‘m\\
B e
Local Local

functions variables

Summary

* Python modules allow you to put related code and objects into a file.
« Using modules also helps prevent conflicting variable names, because imported

* objects are normally named in association with their module.

Python program)

Thiy chapter covers

 Creating a very basic program

« Combining programs and modules

* Distributing Python applications

Creat U’l‘(’ a very bajic program,

« Any group of Python statements placed sequentially in a file can be used as a program,
or script.

e Butit's more standard and useful to introduce additional structure.

* In its most basic form, this task is a simple matter of creating a controlling function in a
file and calling that function.

1 def main():

2 print(“this is our first test script file")

3

4 main() C:\pythoncodes\programs>python basicprogram.py

this is our first test script file

Command-fine arqumenty

1 import sys

2

3 « def main():

4 print("this is our second test script file")
5 print(sys.argv)

6

7 main()

C:\pythoncodes\programs>python cmdarg.py hello world
this is our second test script file

['cmdarg.py', 'hello', 'world']

Uring the jileinput module

* It provides support for
processing lines of input from
one or more files.

import fileinput

def main():
for line in fileinput.input():
if not line.startswith('##'):
print(line, end="")

* It automatically reads the
command-line arguments (out
of sys.argv) and takes them as
its list of input files.

* Thenitallows you to
sequentially iterate through
these lines.

0O~ Oy B W N

main()

put files

1 ## solel.tst: test data for the sole function
2 ©06e

3 © 1ee e

4 ##

5 © 1lee lee

1 ## sole2.tst: more test data for the sole function
2 12 15 @

2 #E

4

100 100 ©

Quick Check

« Match the following ways of interacting with the command line and the correct use case

for each:

Multiple arguments and options
No arguments or just one argument
Processing multiple files

Using the script as a filter

sys.agrv
Use file_input module
Redirect standard input and output

Use argparse module

Pt'ogromw and Modufes

« For small scripts that contain only a few lines of code, a single function works well.

 But if the script grows beyond this size, separating your controlling function from the
rest of the code is a good option to take.

* The script in the next listing returns the English-language name for a given number
between 0 and 99.

O 00 ~N O b WM

WNNNNMNRNNNNNNRRRRERRRRB |2 |2
® WONOUTE WNIEOWOHDSNOOU RWNR®

import sys
conversion mappings

'nineteen’'}

v Ttoodict = et "y YIYE: Tghe’y "2':r "R, "3 “thieeT, &' "fourt; 5" ¢ "Five',
*‘6': "six', '7': "seven®, "8': ‘eight', '9': ‘pine'}
_10tol9dict = {'@"': 'ten', '1': 'eleven', '2': 'twelve', '3': 'thirteen', '4': 'fourteen’,
'5': 'fifteen', '6': 'sixteen', '7': 'seventeen', '8': 'eighteen', '9':
_2etogedict = 72" "twenty ; "3': "thirty'; 47 "forty s '5T: "Hifty'; "6 ¢ "sixty’;
'7': 'seventy', '8°': 'eighty', '9': 'ninety'}

def num2words(num_string):
if num_string == '@':
return'zero’
if len(num_string) > 2:

return "Sorry can only handle 1 or 2 digit numbers"

num_string 8" + num_string

tens, ones = num_string[-2], num_string[-1]

3F tens == "B

return _l1to9dict[ones]
elif tens == "1':

return _10tol9dict[ones]
else:

return _20to9@dict[tens] + °

def main():
print(num2words(sys.argv[1i]))

if __name__ == '_main__":
main()
else:

print("n2w loaded as a module™)

+ _1to9dict[ones]

Distributing Python applications

 Share the source files, of course, probably bundled in a zip or tar file.

« Assuming that the applications were written portably, you could also ship only the
bytecode as .pyc files.

* Wheels packages
* zipapp and pex
* py2exe and pyZapp

 Creating executable programs with freeze

Summary

* Python scripts and modules in their most basic form are just sequences of Python
statements placed in afile.

* Modules can be instrumented to run as scripts, and scripts can be set up so that they
can be imported as modules.

* Scripts can be made executable on the UNIX, macQOS, or Windows command lines. They
can be set up to support command-line redirection of their input and output, and with
the argparse module, it's easy to parse out complex combinations of command-line
arguments.

* On macQOS, you can use the Python Launcher to run Python programs, either individually
or as the default application for opening Python files.

Summary

» On Windows, you can call scripts in several ways: by opening them with a double-click,
using the Run window, or using a command-prompt window.

» Python scripts can be distributed as scripts, as bytecode, or in special packages called
wheels.

« py2exe, py2app, and the freeze tool provide an executable Python program that runs on
machines that don't contain a Python interpreter.

« Now that you have an idea of the ways to create scripts and applications, the next step is
looking at how Python can interact with and manipulate filesystems.

Thiy chapter covers

* Managing paths and pathnames

« Getting information about files
» Performing filesystem operations

* Processing all files in a directory subtree

b anul ob .path vh. pathlib

« The traditional way that file paths and filesystem operations have been handled in
Python is by using functions included in the os and os.path modules.

* These functions have worked well enough but often resulted in more verbose code than
necessary.

 Since Python 3.5, a new library, pathlib, has been added; it offers a more object-oriented
and more unified way of doing the same operations.

Pathy and pathnames

 All operating systems refer to files and directories with strings naming a given file or
directory.

* Strings used in this manner are usually called pathnames (or sometimes just paths).

« Pathname semantics across operating systems are very similar because the filesystem on
almost all operating systems is modeled as a tree structure, with a disk being the root
and folders, subfolders, and so on being branches, subbranches, and so on.

« Different operating systems have different conventions regarding the precise syntax of
pathnames.

Abdolute and refative pathy

* These operating systems allow two types of pathnames:

« Absolute pathnames specify the exact location of a file in a filesystem without any
ambiguity; they do this by listing the entire path to that file, starting from the root of
the filesystem.

 Relative pathnames specify the position of a file relative to some other pointin the
filesystem, and that other point isn't specified in the relative pathname itself; instead,
the absolute starting point for relative pathnames is provided bythe context in which
they're used.

» As examples, here are two Windows absolute pathnames:
C:\Program Files\Doom
D:\backup\June

Abdolute and refative pathy

» and here are two Linux absolute pathnames and a Mac absolute pathname:

/bin/Doom

/floppy/backup/June
/Applications/Utilities

 and here are two Windows relative pathnames:
mydata\project1\readme.txt
games\tetris

 and these are Linux/UNIX/Mac relative pathnames:
mydata/project1/readme.txt
games/tetris

Utilities/Java

The curvent Working directory

* The directory that a Python 1 import os
program is in is called the current 2
working directory for that 3 # get current working directory
program. 4 print(os.getcwd())
 This directory may be different 5
from the directory the program 6 # get listing
resides in. 7 print(os.listdir(os.curdir))
8
9 # change directory
18 os.chdir("foldername")
11 print(os.getcwd())

Accedding divectorier with pathlib

« To get the current directory with pathlib, you could do the following:

import pathlib
cur_path = pathlib.Path()
cur_path.cwd()

”umpulahlu(, patiname)

« To start, construct a few pathnames on different operating systems, using the
os.path.join function.

* Note that importing os is sufficient to bring in theos.path submodule also; there's no
need for an explicit import os.path statement.

import os

print(os.path.join('bin’, 'utils', 'disktools"))

Manipulating pathnames with pathfib

« Start by constructing a few pathnames on different operating systems, using the path
object’'s methods.

from pathlib import Path
cur_path = Path()
print(cur_path.joinpath('bin’, 'utils', 'disktools"))

UAW conHtanhy and janctions

« Checks whether the parent of the parent of path is a directory.
os.path.isdir(os.path.join(path, os.pardir, os.curdir))

* Returns a list of filenames in the current working directory.

os.listdir(os.curdir)

« The os.name constant returns the name of the Python module imported to handle the
operating system-specific details.

oSs.name

Celting Wrmtwn abouf jiles

* The most commonly used Python path-information functions are

* 0s.path.exists

 os.path.isfile

* os.path.isdir

* os.path.islink

* os.path.ismount

* os.path.samefile(path1, path2)
* os.path.isabs(path)

* o0s.path.getsize(path)
 os.path.getmtime(path)

* os.path.getatime(path)

Flove iferystesn operations

» glob.glob("*")

« The glob function from the glob module (named after an old UNIX function that did
pattern matching) expands Linux/UNIX shell-style wildcard characters and character
sequences in a pathname, returning the files in the current working directory that
match.

* Os.rename
» To rename or move a file or directory.

e Os.remove
« To remove or delete a data file.

e 0s.makedirs or os.mkdir

e os.rmdir

Proce/mim(, all piles in a directory
Mubtvee

 Finally, a highly useful function for traversing recursive directory structures is the os.walk
function.

* You can use it to walk through an entire directory tree, returning three things for each
directory it traverses: the root, or path, of that directory; a list of its subdirectories; and a
list of its files.

* When called, os.walk creates an iterator that recursively applies itself to all the
directories contained in the top parameter. In other words, for each subdirectory subdir
in names, os.walk recursively invokes a call to itself, of the form os.walk(subdir, ...).

import os

1
2
3 for root, dirs, files in os.walk(os.curdir):

4 print("{@} has {1} files".format(root, len(files)))
5 if ".git" in dirs:

6 dirs.remove(".git")

Summary

« Python provides a group of functions and constants that handle filesystem references
(pathnames) and filesystem operations in a manner independent of the underlying
operating system.

* For more advanced and specialized filesystem operations that typically are tied to a
certain operating system or systems, look at the main Python documentation for the os,
pathlib, and posix modules.

Thiy chapter covers

« Opening files and file objects

« Closing files
« Opening files in different modes

» Reading and writing text or binary data

Opening iles and jife objects

« The traditional way that file paths and filesystem operations have been handled in
Python is by using functions included in the os and os.path modules.

* These functions have worked well enough but often resulted in more verbose code than
necessary.

 Since Python 3.5, a new library, pathlib, has been added; it offers a more object-oriented
and more unified way of doing the same operations.

Read text jife: KORD.TXT

O o0 ~J o wun b wWw kR

el il el =
(VA ST A)

CHICAGO O'HARE INTERNATIONAL, IL, United States (KORD) 41-59N ©87-55W 200M
Oct 1@, 2017 - 10:44 PM EDT / 2@17.1@.11 0244 UTC

Wind: from the NE (040 degrees) at 14 MPH (12 KT):®

Visibility: 9 mile(s):@

Sky conditions: overcast

Weather: light rain

Precipitation last hour: .85 inches

Temperature: 59.0 F (15.8 C)

Dew Point: 55.9 F (13.3 C)

Relative Humidity: 89%

Pressure (altimeter): 30.03 in. Hg (1016 hPa)

ob: KORD 1162447 ©4012KT 9SM -RA BKNe1l3 BKN©6© 0OVClee 15/13 A3ee3 RMK AO2 Poees Tel5ee133
cycle: 2

Prof,rmw to vead Fext Jile

1 myfile = "../data/KORD.TXT"

2

3 - with open(myfile, 'r') as file_object:
4 # read the first line

5 line = file_object.readline()

6 print(line)

5

8 # keep reading

9 while file_object.readline() != ""
10 line = file_object.readline()

11 print(line)

12

13 # close

14 file_object.close()

Opening fifer in write or other mode)

* The second argument of the open command is a string denoting how the file should be
opened.

* 'r' means "Open the file for reading,”

* 'w' means "Open the file for writing” (any data already in the file will be erased),

« and 'a' means "Open the file for appending” (new data will be appended to the end
of any data already in the file).

* If you want to open the file for reading, you can leave out the second argument; 'r' is
the default.

Reading and writing with path(ib

* In addition to its path-manipulation powers discussed in chapter 12, a Path object can
be used to read and write text and binary files.

 This capability can be convenient because no open or close is required, and separate
methods are used for text and binary operations.

* One limitation, however, is that you have no way to append by using Path methods,
because writing replaces any existing content.

W 00~ v B w N

NN N R R R R e 2
N R ® WUk WNR®

from pathlib import Path

myfile = "mytextfile.txt"
mybinfile = "mybinfile™

open text file
p_text = Path(myfile)

write to file
p_text.write_text('Text file contents')

read file
line = p_text.read_text()
print(line)

open binary file
p_binary = Path(mybinfile)
p_binary.write_bytes(b'Binary file contents')

read bin file
binline = p_binary.read_bytes()
print(binline)

bt N+ AT W S = VY 6 T

Screen inpulfoudput and vedirvection

 Use the built-in input method to prompt for and read an input string.

. . import sys
get string 1input

. f ANpUEL "BEel wls e 10 Yaer) print(“"Write to the standard output.™)
print(x)

get number

x = int(input("Enter your number: "))

, # get user input
print(x)

s = sys.stdin.readline()

1
2
3
4
5 sys.stdout.write("Write to the standard output.\n")
6
7
8
9 print(s)

Summary

* File input and output in Python uses various built-in functions to open, read, write, and
close files.

* In addition to reading and writing text, the struct module gives you the ability to read or
write packed binary data.

« The pickle and shelve modules provide simple, safe, and powerful ways of saving and
accessing arbitrarily complex Python data structures.

Thiy chapter covers

« Understanding exceptions

« Handling exceptions in Python

* Using the with keyword

Cenveral philodophy of exvors anul
dﬂfwn Mﬁ

* SOLUTION 1: DON'T HANDLE THE PROBLEM

* The simplest way to handle this disk-space problem is to assume that there'll always
be adequate disk space for whatever files you write and that you needn’t worry
about it.

« Unfortunately, this option seems to be the most commonly used.

« SOLUTION 2: ALL FUNCTIONS RETURN SUCCESS/FAILURE STATUS
* There are numerous ways to do this, but a typical method is to have

* each function or procedure return a status value that indicates whether that function
or procedure call executed successfully.

« SOLUTION 3: THE EXCEPTION MECHANISM

» The code checks for errors on each attempted file write and passes an error status
message back up to the calling procedure if an error is detected.

A mote jormal dejinition o} exceptions

* The act of generating an exception is called raising or throwing an exception.

« The act of responding to an exception is called catching an exception, and the code
that handles an exception is called exception-handling code or just an exception
handler.

Hand(ing digterent Types of exceptions

» Depending on exactly what event causes an exception, a program may need to take
different actions.

« An exception raised when disk space is exhausted needs to be handled quite
differently from an exception that's raised if you run out of memory, and both of these
exceptions are completely different from an exception that arises when a divide-by-zero
error occurs.

* One way to handle these different types of exceptions is to globally record an error
message indicating the cause of the exception, and have all exception handlers
examine this error message and take appropriate action. In practice, a different method
has proved to be much more flexible.

Exceptiony in Python

« An exception is an object generated automatically by Python functions with a raise
statement.

« After the object is generated, the raise statement, which raises an exception, causes
execution of the Python program to proceed in a manner different from what would
normally occur.

* Instead of proceeding with the next statement after the raise or whatever generated the
exception, the current call chain is searched for a handler that can handle the generated
exception.

* If such a handleris found, it's invoked and may access the exception object for more
information.

* If no suitable exception handler is found, the program aborts with an error message.

Types o} Python exceptions

« The Python exception set is hierarchically structured, as reflected by the indentation in
this list of exceptions.

« Each type of exception is a Python class, which inherits from its parent exception type.

 This hierarchy is deliberate: Most exceptions inherit from Exception, and it's strongly

recommended that any user-defined exceptions also subclass Exception, not
BaseException.

BassExceptlion
EvstemExit
FeyvboardInterrupt
GeneratorExit
Excepticn
Etoplteration
ArithmeticError
FloatingDointError
OverflowError
ZerolivisionError
AssertionError
AtctributeError
BufferError
BEOFError
ImportError
ModuleNoteFoundError
LookupError
IndexError
KevyError
MamoryError
NameError
UnboundLocalErrofr
OSError
BlockingTOError
ChildProcessError
ConnectionError
BrokenbPipeError
ConnectionAbortedError
ConnactionRefusedError
ConnectionRessetError
FileExistsError
FiJaNotFoumdError
InterruptediError
IsAllirectoryError
NotADirectoryError
ParmissionError

Raiding exceptions

* Error-checking code built into Python detects that the second input line requests an
element at a list index that doesn’t exist and raises an IndexError exception.

=== alist = [1, 2 3]
=»> element = alist[7]
Traceback (innermost last):

File "<«stdin=", line 1, in ?
IndexError: list index out of range

Catching and handfing exceptions

« By defining appropriate exception try:
handlers, you can ensure that commonly body
. . except exception typel as varl:
encountered exceptional circumstances _ . =
. exception codel
don't cause the program to fail; perhaps except exception type2 as var2:
they display an error message to the user cxception coded

or do something else, perhaps even fix
the problem, but they don't crash the .
program. EXCopis:
default exception code

else:

else body
finally:

finally body

Where o whe exceplions

« Exceptions are natural choices for handling almost any error condition.

* It's an unfortunate fact that error handling is often added when the rest of the program is
largely complete, but exceptions are particularly good at intelligibly managing this sort
of after-the-fact error-handling code (or, more optimistically, when you're adding more
error handling after the fact).

» Exceptions are also highly useful in circumstances where a large amount of processing
may need to be discarded after it becomes obvious that a computational branch in your
program has become untenable.

Context managers wring the with
keyword

Some situations, such as reading files, follow a predictable pattern with a set beginning
and end.

In the case of reading from a file, quite often the file needs to be open only one time:
while data is being read.

Then the file can be closed.

In terms of exceptions, you can code this kind of file access like this:

try:
infile = open(filename)
data = infile.read()
finally:

infile.close()

Context managers wring the with

@word/

« Python 3 offers a more generic way of handling situations like this: context managers.

« Context managers wrap a block and manage requirements on entry and departure from
the block and are marked by the with keyword.

* File objects are context managers, and you can use that capability to read files:

with open(filename) as infile:
data = infile.read()

Summary

* Python's exception-handling mechanism and exception classes provide a rich system to
handle runtime errors in your code.

* By using try, except, else, and finally blocks, and by selecting and even creating the
types of exceptions caught, you can have very fine-grained control over how exceptions
are handled and ignored.

» Python'’s philosophy is that errors shouldn't pass silently unless they're explicitly silenced.

* Python exception types are organized in a hierarchy because exceptions, like all objects
in Python, are based on classes.

(larrer and object-
oriented

progrommbu(,

Thiy chapter covers

« Defining classes

 Using instance variables and @property
* Defining methods

* Defining class variables and methods

* Inheriting from other classes

» Making variables and methods private

* Inheriting from multiple classes

Dejining claddes

« Aclassin Python is effectively a data type.

« All the data types built into Python are classes, and Python gives you powerful tools to
manipulate every aspect of a class’s behavior.

e You define a class with the class statement:
class MyClass:

body

« Create a new object of the class type (an instance of the class) by calling the class name
as a function:

instance = MyClass|()

Example clars

e Class instances can be used as
structures or records.

* Unlike C structures or Java classes, the
data fields of an instance don't need to
be declared ahead of time; they can be
created on the fly.

* The following short example defines a
class called Circle, creates a Circle
instance, assigns a value to the radius
field of the circle, and then uses that
field to calculate the circumference of
the circle

W 0~ & B W M

o
N R ®

define a class
class Circle:
def _init_ (self):
self.radius = 1

create an instance of a class
my_circle = Circle()
print(2 * 3.14 * my_circle.radius)

set property
my_circle.radius = 5
print(2 * 3.14 * my circle.radius)

bhutance variable)

« Take a look at the Circle class again, radius is an instance variable of Circle instances.

« That s, each instance of the Circle class has its own copy of radius, and the value stored

in that copy may be different from the values stored in the radius variable in other
instances.

* In Python, you can create instance variables as necessary by assigning to a field of a
class instance:

instance.variable = wvalue

* If the variable doesn't already exist, it's created automatically, which is how __init__
creates the radius variable.

Methody

« A method is a function associated with a particular class.

* You've already seen the special __init__ method, which is called on a new instance when
that instance is created.

15 class Circle(Shape):

16 """Circle Class: inherits from Shape and has method area"""
17 pl = 3.14159

18 def __init_ (self, r=1, x=0, y=0):

19 Shape.__init_ (self, x, y)

20 self.radius = r

21 def area(self):

22 """Circle area method: returns the area of the circle."™"
23 return self.radius * self.radius * self.pi

24 def _ str_ (self):

25 return "Circle of radius %s at coordinates (%d, %d)"\

26 % (self.radius, self.x, self.y)

Clard variables

« A class variable is a variable associated with a class, not an instance of a class, and is
accessible by all instances of the class.

« A class variable might be used to keep track of some class-level information, such as
how many instances of the class have been created at any point.

» Aclass variable is created by an assignment in the class body, not in the __init__
function.

15
16
17
18
19
20
21
7.
23
24
25
26

class Circle(Shape):
"""Circle Class: inherits from Shape and has method area
pi = 3.14159
def __init__ (self, r=1, x=0, y=0):
Shape. init_ (self, x, y)
self.radius = r
def area(self):
"""Circle area method: returns the area of the circle.
return self.radius * self.radius * self.pi
def _ str_ (self):
return "Circle of radius %s at coordinates (%d, %d)"\
% (self.radius, self.x, self.y)

TE IR ¥R

Matic methodd and cfary methods

* You can invoke static methods even though no instance of that class has been created,
although you can call them by using a class instance.

* To create a static method, use the @staticmethod decorator.

@staticmethod
def total_area():
"""Static method to total the areas of all Circles
total = ©
for ¢ ‘in Circle.all_circles:
total = total + c.area()
return total

>>>» circle.Circle.total area()
31.4158599999995997

Matic methodd and cfary methods

« Class methods are similar to static methods in that they can be invoked before an object
of the class has been instantiated or by using an instance of the class.

« But class methods are implicitly passed the class they belong to as their first parameter,
so you can code them more simply, as here.

@classmethod el circle.total ()
) >»>> circle cm.Circle.total area
def total area(cls): to oL
total = © YT - N
) . =»>» C2.radius = 3
for ¢ in cls.all circles: >»> glrcle em.Circle.total area()
total = total + c.area() 31.415899999999997

return total

Tey This

« Write a class method similar to total_area() that returns the total circumference of all
circles.

herifance

» Parent and children relationship.

» Also known as superclass and subclass.

Squure clad)

 Properties x and y are the coordinates of the Square object to be drawn on canvas.

1 ~ class Square:

def init (self, side=1, x=0, y=0):
self.side = side
self.X = X
self.y = y

(0 TN ¥ o TR SR W W R N6

Circle cladrs

» Circle class also have coordinates x and y.

7 class Circle:

8 def _ init_ (self, radius=1, x=0, y=0):
= self.radius = radius
10 self.Xx = X

11 self.y = y

Shape clary

* Move all common properties to a more generic class.

 This class will be the parent (superclass).

15 class Shape:

16 def init (self, x, y):
17 self.x = X
18 self.y = y

19

Shape cfary (updated)

« Make Square class inherits from Shape class by pass the superclass’'s name in the
bracket.

* The call superclass's init method to initialize it.

20 class Square(Shape):

21 def init (self, side=1, x=0, y=0):
22 super().__1init_ (X, Vy)

23 self.side = side

Circle cfary (updated)

* Do the same thing to Circle class.

25 class Circle(Shape):

26 def init (self, r=1, x=0, y=0):
27 super().__1init_ (X, y)

28 self.radius = r

Tey This

« Rewrite the code for a Rectangle class to inherit from Shape. Because squares and
rectangles are related, would it make sense to inherit one from the other? If so, which
would be the base class, and which would inherit?

* How would you write the code to add an area() method for the Square class? Should the
area method be moved into the base Shape class and inherited by circle, square, and
rectangle? If so, what issues would result?

heribance with cfad) and inytance

variable)

* Inheritance allows an instance to inherit

attributes of the class. 31 v-class P:
32 z = "Hello"

* Instance variables are associated with object 33 def set_p(self):
instances, and only one instance variable of a 34 self.x = "Class P"
given name exists for a given instance. 3 def print_p(self):

36 print(self.x)

37

38 - class C(P):

39 def set_c(self):

40 self.x = "Class C"
41 def print_c(self):

42 print(self.x)

Private vaviabled and methody

* A private variable or private method is one that can’t be seen outside the methods of
the class in which it's defined.

e Private variables and methods are useful for two reasons:

» They enhance security and reliability by selectively denying access to important or
delicate parts of an object’'s implementation,

« and they prevent name clashes that can arise from the use of inheritance.
A class may define a private variable and inherit from a class that defines a private

variable of the same name, but this doesn’t cause a problem, because the fact that the
variables are private ensures that separate copies of them are kept.

* Any method or instance variable whose name begins—but doesn’t end—with a double
underscore (__) is private; anything else isn't private.

Mine cladd with private variables

1 v class Mine:

2 def _ init_ (self):
3 selt.x =2

4 self. y =3

5 def print_y(self):
6 print(self. vy)

Tey This

« Modify the Rectangle class's code to make the dimension variables private. What
restriction will this modification impose on using the class?

Uring eproperty jor move [lexible
v tance variab(e)

» Python allows you as the programmer to access instance variables directly, without the
extra machinery of the getter and setter methods often used in Java and other object-
oriented languages.

« This lack of getters and setters makes writing Python classes cleaner and easier, but in
some situations, using getter and setter methods can be handly.

* The answer is to use a property.

» A property combines the ability to pass access to an instance variable through methods
like getters and setters and the straightforward access to instance variables through dot
notation.

Uring eproperty jor move [lexible
v tance variab(e)

* To create a property, you use the property decorator with a method that has the
property’'s name.

1 ~ class Temperature:

2 def __init_ (self):

3 self. temp fahr = @

4

5 @property

6 def temp(self):

7 return (self._temp_fahr - 32) * 5 / 9
8

9 @temp.setter

10 def temp(self, new _temp):
11 self. temp_fahr = new_temp * 9 / 5 + 32

dcoping tuled and namespaces for clads

vutance)

* When you're in a method of a class, you have direct
access to the local namespace (parameters and
variables declared in the method), the global
namespace (functions and variables declared at the
module level), and the built-in namespace (built-in
functions and built-in exceptions). These three
namespaces are searched in the following order:
local, global, and built-in.

Parameters

Built-in ke
namespace T
) \ \\
Buili<in Built-in
functions exceptions
Global e
namespace e
N \
Module Module
functions variables
Local P
namespace h“‘xx
f \ Hﬁ“x
/ Local

variables

dcoping tuled and namespaces for clads

vutance)

* You also have access through the self variable to the

instance’s namespace (instance variables, private
instance variables, and superclass instance
variables), its class’s namespace (methods, class
variables, private methods, and private class
variables), and its superclass’'s namespace
(superclass methods and superclass class variables).

* These three namespaces are searched in the order
instance, class, and then superclass.

Superclass
s I Superclass Superclass Private
Upsisims class class superclass
methods variables variables class
variables
Class e o
\\ \ s
: Private
Methods Class Private class
variables methods variables
Class ;\
instance he e
/ N
Private
Instance Private Sil::;?;gz : 5 superclass
/ variables Instance variables instance
variables

Destructory and memory management

* You've already seen class initializers (the __init__ methods).

e A destructor can be defined for a class as well.

» Python provides automatic memory management through a reference-counting
mechanism.

« Thatis, it keeps track of the number of references to your instance; when this number
reaches zero, the memory used by your instance is reclaimed, and any Python objects
referenced by your instance have their reference counts decremented by one.

* You almost never need to define a destructor

MNulliple inheritance

* Python places no such restrictions on multiple inheritance.

« A class can inherit from any number of parent classes in the same way that it can inherit

from a single parent class.

* In the simplest case, none of the involved classes, including those inherited indirectly
through a parent class, contains instance variables or methods of the same name.

Summary

« Defining a class in effect creates a new data type.

e« _init__isused to initialize data when a new instance of a class is created, butitisn't a
constructor.

* The self parameter refers to the current instance of the class and is passed as the first
parameter to methods of a class.

« Static methods can be called without creating an instance of the class, so they don't
receive a self parameter.

« Class methods are passed a cls parameter, which is a reference to the class, instead of
self.

Summary

 All Python methods are virtual. That is, if a method isn't overridden in the subclass or
private to the superclass, it's accessible by all subclasses.

 Class variables are inherited from superclasses unless they begin with two underscores

(__), in which case they're private and can't be seen by subclasses. Methods can be
made private in the same way.

 Properties let you have attributes with defined getter and setter methods, but they still
behave like plain instance attributes.

 Python allows multiple inheritance, which is often used with mixin classes.

Regular expresdions

Thiy chapter covers

» Understanding regular expressions
 Creating regular expressions with special characters

» Using raw strings in regular expressions

Extracting matched text from strings

Substituting text with regular expressions

What iy a regular expresdion?

« Aregular expression (regex) is a way of recognizing and often extracting data from
certain patterns of text.

« Aregex that recognizes a piece of text or a string is said to match that text or string.

« Aregex is defined by a string in which certain characters (the so-called metacharacters)
can have a special meaning, which enables a single regex to match many different
specific strings.

EXumpfe

* Here's a program with a regular
expression that counts how many lines
in a text file contain the word hello.

e A line that contains hello more than
once is counted only once.

O 0 ~1 vl B W M2

10
i
12
13

import re

regexp = re.compile("hello")
count = @

file = open("textfile", 'r')
for line in file.readlines():

if regexp.search(line):
count = count + 1

file.close()
print(count)

Regular expressions with special
character)

* The previous example has a small flaw: It counts how many lines contain "hello" but
ignores lines that contain "Hello" because it doesn’t take capitalization into account.

« One way to solve this problem would be to use two regular expressions—one for "hello"
and one for "Hello"—and test each against every line.

« A better way is to use the more advanced features of regular expressions.

regexp = re.compile("hello")
regexp = re.compile("hello|Hello")
regexp = re.compile("(h|H)ello")
regexp = re.compile("[hH]ello")

(6) I Vo B SR VY

Regular exprerdions an raw Hfrings

* Araw string looks similar to a normal string except that it has a leading r character
immediately preceding the initial quotation mark of the string.

* Here are some raw strings:

r"Hello"

r"""\tTo be\n\tor not to be"""
r'Goodbye’

r'''12345""

Extracting matched text [rom Htring)

* One of the most common uses of regular expressions is to perform simple pattern-
based parsing on text.

surname, firstname middlename: phonenumber

regexp = re.compile(r”(?P<last>[-a-zA-Z]+),"
r" (?P<first>[-a-zA-Z]+)"
r"((?P<middle>([-a-zA-Z]+)))?"
r": (?P<phone>(\(\d{3}-)?\d{3}-\d{4})"

O 00~ 5 1 B w N

N NN R R R R R R R R R
N R ® W EoNOU R WNR®

import re

regexp = re.compile(r"(?P<last>[-a-zA-Z]+),"
r" (?P<first>[-a-zA-Z]+)"
r"((?P<middle>([-a-zA-Z]+)))?"
r": (?P<phone>(\(\d{3}-)?\d{3}-\d{4})"

file = open("textfile", 'r")
for line in file.readlines():
result = regexp.search(line)
if result == None:
print("Oops, I don't think this is a record")
else:
lastname = result.group('last’)
firstname = result.group('first’)
middlename = result.group('middle')
if middlename == None:
middlename = ""
phonenumber = result.group('phone’)
print('Name:', firstname, middlename, lastname,
file.close()

Number:', phonenumber)

Tey This

* Making international calls usually requires a + and the country code.

« Assuming that the country code is two digits, how would you modify the code above to
extract the + and the country code as part of the number? (Again, not all numbers have
a country code.)

* How would you make the code handle country codes of one to three digits?

Subdtituting text with regular
exfrmiom

* In addition to extracting strings from text, you can use Python'’s regex module to find
strings in text and substitute other strings in place of those that were found.

import re
string = "If the the problem is textual, use the the re module”
pattern = r"the the”"

regexp = re.compile(pattern)

WO 00 ~ O b w M=

regexp.sub("the", string)

Tey This

* In the previous activity, you extended a phone-number regular expression to also
recognize a country code.

« How would you use a function to make any numbers that didn't have a country code
now have +1 (the country code for the United States and Canada)?

Summary

« For a complete list and explanation of the regex special characters, refer to the Python
documentation.

* In addition to the search and sub methods, many other methods can be used to split
strings, extract more information from match objects, look for the positions of substrings
in the main argument string, and precisely control the iteration of a regex search over an
argument string.

 Besides the \d special sequence, which can be used to indicate a digit character, many
other special sequences are listed in the documentation.

« There are also regex flags, which you can use to control some of the more esoteric
aspects of how extremely sophisticated matches are carried out.

Data types ap objech

Thiy chapter covers

 Treating types as objects

Using types

Creating user-defined classes

Understanding duck typing

Using special method attributes

Subclassing built-in types

Typesr are objechy, too

« This example is the first time you've seen the built-in type function in Python.
* It can be applied to any Python object and returns the type of that object.

* In this example, the function tells you that 5 is an int (integer) and that ['hello’,
'goodbye'] is a list—things that you probably already knew.

pe(['hello', 'goodbye'])

Typesr are objechy, too

* The object returned by type is an object whose type happens to be <class 'type'>; you
can call it a type object.

« Atype object is another kind of Python object who's only outstanding feature is the
confusion that its name sometime causes.

=
»»> type(['hello', 'goodbye'])

Uring types

* Now that you know that data types can be represented as Python type objects, what
can you do with them?

* You can compare them, because any two Python objects can be compared.

»>>»> type("Hello") type ("Goodbye")

= type(5)

ype ("Hello")

Typesr and wrer-dejined clads

« The most common reason to be interested in the types of
objects, particularly

* instances of user-defined classes, is to find out whether a
particular object is an instance of a class.

 After determining that an object is of a particular type, the
code can treat it appropriately.

=>> Cclass C:

pass

»>> class E(D)
pass
»»> X = 12
x> o = Cf)
==>=>d = D{()
=== 2 = BE{]
»»> iginstance |
False

False

»=> isinstance |

Trus

Trus

»=»= iginstance |

False

=> ispinstance |

E)
E)
E)
D)
E)
type (5

What iy o dpecial method attribute?

« Aspecial method attribute is an attribute of a Python class with a special meaning to
Python.

* It's defined as a method but isn't intended to be used directly as such.

» Special methods aren’t usually directly invoked; instead, they're called automatically by
Python in response to a demand made on an object of that class.

* Perhaps the simplest example is the __str__ special method attribute.

« If it's defined in a class, any time an instance of that class is used where Python requires a
user-readable string representation of that instance, the __str__ method attribute is

* invoked, and the value it returns is used as the required string.

EXumpfe

1 v class Color:
2 v def _init_ (self, red, green, blue):

3 self. red = red

4 self. green = green

5 self. blue = blue

6~ def _ str_ (self):

7 return "Color: R={@:d}, G={1:d}, B={2:d}".format (self._red, self. green, self. blue)

»»» £ = Geler(ls, 35, 3)
>33 print{c)
Color: R=15, 6=35; B=3

Jubclarsing prom builk-in fypes

* Instead of creating a class for a typed list from scratch, as you did in the previous
examples, you can subclass the list type and override all the methods that need to be

aware of the allowed type.

« One big advantage of this approach is that your class has default versions of all list
operations because it's a list already:.

« The main thing to keep in mind is that every type in Python is a class, and if you need a
variation on the behavior of a built-in type, you may want to consider subclassing that

type.

o

class TypedListlist(list):
def _ init_ (self, example_element, initial list=[]):
self.type = type(example element)
if not isinstance(initial list, list):
raise TypeError(“"Second argument of TypedlList must
“be a list."™)
for element in initial list:
self._ check(element)
super().__init_ (initial_list)

def _ check(self, element):
if type(element) != self.type:
raise TypeError("Attempted to add an element of "
"incorrect type to a typed list.")
def _ setitem_ (self, i, element):
self._ check(element)
super().__setitem_ (i, element)

Summary

* Python has the tools to do type checking as needed in your code, but by taking
advantage of duck typing, you can write more flexible code that doesn’t need to be as
concerned with type checking.

» Special method attributes and subclassing built-in classes can be used to add list-like
behavior to user-created classes.

* Python's use of duck typing, special method attributes, and subclassing makes it
possible to construct and combine classes in a variety of ways.

Thiy chapter covers

« Defining a package

» Creating a simple package

* Exploring a concrete example

Using the __all__ attribute

Using packages properly

What i» a/pad(at(,e?

A module is a file containing code.

A module defines a group of usually related Python functions or other objects.
The name of the module is derived from the name of the file.

A package is a directory containing code and possibly further subdirectories.

A package contains a group of usually related code files (modules).

The name of the package is derived from the name of the main package directory.

Packages are a natural extension of the module concept and are designed to handle
very large projects.

Just as modules group related functions, classes, and variables, packages group related
modules.

A irst eXample

mathproj

VAN

comp

AN

symbolic

L O L P —

numeric

Proper whe of package)

« Packages shouldn’t use deeply nested directory structures. Except for absolutely huge
collections of code, there should be no need to do so. For most packages, a single top-
level directory is all that's needed. A two-level hierarchy should be able to effectively
handle all but a few of the rest. As written in The Zen of Python, by Tim Peters (see
appendix A), “Flat is better than nested.”

 Although you can use the __all__ attribute to hide names from from ... import * by not
listing those names, doing so probably is not a good idea, because it's inconsistent. If
you want to hide names, make them private by prefacing them with an underscore.

Summary

« Packages let you create libraries of code that span multiple files and directories.

« Using packages allows better organization of large collections of code than single
modules would allow.

* You should be wary of nesting directories in your packages more than one or two levels
deep unless you have a very large and complex library.

Thiy chapter covers

* Managing various data types—strings, numbers, and more

Manipulating files and storage

Accessing operating system services

Using internet protocols and formats

Developing and debugging tools
Accessing PyPl (a.k.a. “The Cheese Shop”)

Installing Python libraries and virtual environments using pip and venv

"Balterier included : The Atandard
ﬁbrarz

* In Python, what's considered to be the library consists of several components, including
built-in data types and constants that can be used without an import statement, such as
numbers and lists, as well as some built-in functions and exceptions.

» The largest part of the library is an extensive collection of modules.

« If you have Python, you also have libraries to manipulate diverse types of data and files,
to interact with your operating system, to write servers and clients for many internet
protocols, and to develop and debug your code.

dring Herviced moduler

m Description and possible uses

string

re

struct
difflib

textwrap

Compare with string constants, such as digits or whitespace; format
strings (see chapter 6)

Search and replace text using regular expressions (see chapter 16)

Interpret bytes as packed binary data, and read and write structured
data to/from files

Use helpers for computing deltas, find differences between strings or
sequences, and create patches and diff files

Wrap and fill text, and format text by breaking lines or adding spaces

Data typed modules
Modles—— Desciption and possbleuees ———————————

datetime, Date, time, and calendar operations

calendar

C Container data types

enum Allows creation of enumerator classes that bind symbolic names to
constant values

array Efficient arrays of numeric values

sched Event scheduler

queue Synchronized queue class

copy Shallow and deep copy operations

pprint Data pretty printer

typing Support for annotating code with hints as to the types of objects,

particularly of function parameters and return values

Nuwmeric and mathemalical modules

m Description and possible uses

numbers
math, cmath
decimal
statistics
fractions
queue

random

itertools
functools

operator

Numeric abstractbase classes

Mathematical functions for real and complex numbers
Decimal fixed-point and floating-point arithmetic
Functions for calculating mathematical statistics
Rational numbers

Synchronized queue class

Generate pseudorandom numbers and choices, and shuffle
sequences

Functions that create iterators for efficient looping
Higher-order functions and operations on callable objects

Standard operators as functions

File and storage module)

m Description and possible uses

os.path
pathlib
fileinput
filecmp
tempfile
glob, fnmatch
linecache
csv

sqlite3

zlib, gzip, bz2,
zipfile, tarfile

Perform common pathname manipulations

Deal with pathnames in an object-oriented way

lterate over lines from multiple input streams

Compare files and directories

Generate temporary files and directories

Use UNIX-style pathname and filename pattern handling
Gain random access to text lines

Read and write CSV files

Work with a DB-API 2.0 interface for SQLite databases

Work with archive files and compressions

OPeraﬂvvg Mydterm modufed
Modules | Descriptionand possibleuses |

oS Miscellaneous operating system interfaces

io Core tools for working with streams

time Time access and conversions

optparse Powerful command-line option parser

logging Logging facility for Python

getpass Portable password input

curses Terminal handling for character-cell displays
platform Access to underlying platform’s identifying data
Ctypes Foreign function library for Python

select Waiting for I/O completion

Modules Auppol'ﬁWg internel profoco(s
and Iﬁrmah

m Description and possible uses

socket, ssl Low-level networking interface and SSL wrapper for socket
Objects

email Email and MIME handling package

json JSON encoder and decoder

html.parser, Parse HTML and XHTML

html.entities

cgi, cgitb Common Gateway Interface support

urllib.request, Open and parse URLs

urllib.parse

socketserver Framework for network servers

http.server HTTP servers

Development, debugging, and runtime
moduled

m Description and possible uses

pydoc Documentation generator and online help system
doctest Test interactive Python examples

unittest Unit testing framework

test.support Utility functions for tests

pdb Python debugger

trace Trace or track Python statement execution

Sys System-specific parameters and functions

gc Garbage collector interface

inspect Inspect live objects

bhtalling Python (ibraries wding pip
and yerw

« Python offers pip as the current solution to both problems. pip tries to find the module in
the Python Package index (more about that soon), downloads it and any dependencies, and

takes care of the installation.
» The basic syntax of pip is quite simple.

» To install the popular requests library from the command line, for example, all you have to
dois

python3.6 -m pip install requests
python3.6 -m pip install --upgrade requests
python3.6 -m pip install requests==2.11.1

python3.6 -m pip install --user requests

Virtual erwiroruments

* You have another, better option if you need to avoid installing libraries in the system Python.

» This option is called a virtual environment (virtualenv).

« Avirtual environment is a self-contained directory structure that contains both an installation
of Python and its additional packages.

» Because the entire Python environment is contained in the virtual environment, the libraries
and modules installed there can’t conflict with those in the main system or in other virtual

environments, allowing different applications to use different versions on both Python and
its packages.

python3.6 -m venv test-env
test-env\Scripts\activate.bat

pip install requests

PyPl (ak.a. "The Cheere Shop™)

« Although distutils packages get the job done, there’s one catch: You have to find the correct
package, which can be a chore.

» And after you've found a package, it would be nice to have a reasonably reliable source
from which to download that package.

» To meet this need, various Python package repositories have been made available over the
years.

 Currently, the official (but by no means the only) repository for Python code is the Python
Package Index, or PyPI (formerly also known as “The Cheese Shop,” after the Monty Python
sketch) on the Python website.

* You can access it from a link on the main page or directly at https://pypi.python.org.

« PyPlis the logical next stop if you can't find the functionality you want with a search of the
standard library.

Summary

* Python has a rich standard library that covers more common situations than many other
languages, and you should check what's in the standard library carefully before looking
for external modules.

* If you do need an external module, prebuilt packages for your operating system are the
easiest option, but they're sometimes older and often hard to find.

» The standard way to install from source is to use pip, and the best way to prevent
conflicts among multiple projects is to create virtual environments with the venv module.

« Usually, the logical first step in searching for external modules is the Python Package
Index (PyPl1).

Thiy chapter covers

« Moving and renaming files

« Compressing and encrypting files

 Selectively deleting files

The problem: The never-ending plow of
data ﬂ %

« Many systems generate a continuous series of data files.

« These files might be the log files from an e-commerce server or a regular process; they
might be a nightly feed of product information from a server; they might be automated
feeds of items for online advertising; historical data of stock trades; or they might come
from a thousand other sources.

* They're often flat text files, uncompressed, with raw data that's either an input or a
byproduct of other processes.

* In spite of their humble nature, however, the data they contain has some potential value,
so the files can't be discarded at the end of the day—which means that every day, their
numbers grow.

« Over time, files accumulate until dealing with them manually becomes unworkable and
until the amount of storage they consume becomes unacceptable.

dcenario: The product feed rom hell

« Atypical situation example is a daily feed of product data.

* This data might be coming in from a supplier or going out for online marketing, but the
basic aspects are the same.

* The simplest thing you might do is mark the files with the dates on which they were
received and move them to an archive folder.

« That way, each new set of files can be received, processed, renamed, and moved out of
the way so that the process can be repeated with no loss of data.

« After a few repetitions, the directory structure might look something like this:

working/ . \ Main working folder, with

Abem 3nto. Xt current files for processing
item attributes.txt

related items.txt

arCh:lvE’f . Subdirectory for archiving
Jl_tem_lnft:uTEDl?—{JQ—lE . Ext processed files
item attributes 2017-09-15.txt
related items 2017-09-15.txt
item info 2016-07-16.txt
item attributes 2017-09-16.txt
related items 2017-09-16.txt
item info 2017-09-17.txt
item attributes 2017-09-17.txt
related items 2017-09-17.txt

How to Mofye tF?

* First, you need to rename the files so that the current date is added to the filename.

« To do that, you need to get the names of the files you want to rename; then you need
to get the stem of the filenames without the extensions.

* When you have the stem, you need to add a string based on the current date, add the
extension back to the end, and then actually change the filename and move it to the

archive directory.

import datetime
import pathlib

Sets the pattern to match files
FILE PATTERN = "* _txt" and the archive directory

- L1 1 L] =-
ARCHIVE = "archive A dlrecturjr named

“archive” must exist

if name == "'_main ': for this code to run.

date string = datetime.date.today().stritime("5Y-sm-%d4d")

Creates a new cur path = pathlib.Path(".") Uses the date object from the
path from the paths = cur path.glob(FILE PATTERN) datetime library to create a date
current path, the string based on today's date
archive directory, for path in paths:
andf!i:::';::‘: new filename = "{} {}{}".format (path.stem, date string, path.suffix)

> new path = cur path.joinpath(ARCHIVE, new filename)

path.rename (new path) Renames (and moves)

the file as one step

Move orgahi@af woh

* The solution to storing files described in the previous section works, but it does have
some disadvantages.

« For one thing, as the files accumulate, managing them might become a bit more
trouble, because over the course of a year, you'd have 365 sets of related files in the
same directory, and you could find the related files only by inspecting their names.

* If the files arrive more frequently, of course, or if there are more related files in a set, the
hassle would be even greater.

A better olulion

« To mitigate this problem, you can change the way you archive the files.

* Instead of changing the filenames to include the dates on which they were received,
you can create a separate subdirectory for each set of files and name that subdirectory
after the date received.

* Your directory structure might look like this (next slide)

working/ 4_‘ Main working folder, with

rtem anlo. Lak current files for processing
item attributes.txt

related items.txt Main subdirectory for
archive/ archiving processed files
2016-09-15/ <

item info.txt
item attributes.txt
related items.txt
2016-09-16/ .
item info.txt
item attributes.txt
related items.txt
2016-09-17/ +—
item info.txt
item attributes.txt
related ltems.txt

Subdirectories
for each set of
files, named for
date received

import datetime
import pathlib

FILE_PATTEEH = IT& kM
ARCHIVE = "archiwve"
Gl name == ' main ':

date string = datetime.date.today().strftime ("%Y-%m-%d")

cur path

pathlib.Path(".")

new path = cur path.joinpath(ARCHIVE, date string)

new_path.mikdir() Note that this directory needs

to be created only once, before

for path in paths:
path.rename (new path.joinpath({path.name})

Comprerying files

* If the space that the files are taking up is an issue, the next approach you might
consider is compressing them.

Main working folder, where current files are processed;

working/ these files are archived and removed after processing.
archive/
2016-09-15.zip Lip files, each one containing that day's
2016-09-16.zip item_info.txt, attribute_info.text, and

2016-09-17.zip related items.txt

import datetime
import pathlib

import zipfile N Imports zipfile

library
FILE PATTEEN = "#*._ txt"

ARCHIVE = "archive" I
archive Creates the path to the zip

SE onane s ¥ osaam W file in the archive directory

date string = datetime.date.today().strftime("%Y-%m-%d")

cur path = pathlib.Path(".")
paths = cur path.glcob(FILE PATTERN)

zip file path = cur path.joinpath (ARCHIVE, date string + ".zip") b
zip file = zipfile.ZipFile(str(zip file path), "w")

Opens the new zip file object for writing; str()
is needed to convert a Path to a string.

for path in paths:
zip file.write(str(path}) Whrites the current

path.unlink () Removes the current file file to the zip file
from the working directory

Crooming filed @ Deleting

* The process of removing files after they reach a certain age is sometimes called
grooming.

« Suppose that after several months of receiving a set of data files every day and
archiving them in a zip file, you're told that you should retain only one file a week of the
files that are more than one month old.

» The simplest grooming script removes any files that you no longer need - in this case,
all but one file a week for anything older than a month old.

from datetime import datetime, timedelta
import pathlib

import zipfile

FILE PATTERN = "* _zip"
ARCHIVE = "archive"
ARCHIVE WEEKDAY = 1

if mname == "' main ':

cur path = pathlib.Path(".")

zip file path = cur path.joinpath (ARCHIVE)

path.stem paths = zip file path.glcb(FILE PATTERN)
returns the current date = datetime.today()
filename -
Wﬂhﬂ“tﬁﬂf for path in paths:
extension.

name = path.stem

path date = datetime.strptime (name, "%Y-¥m-%d")
path timedelta = current date - path date
if path timedelta > timedelta(days=30) and path date.weekday() !=

Subtracting one

date from
another yields a
timedelta object.

ARCHIVE WEEKDAY :
path.unlink ()

Gets a datetime object
for the current day

strptime parses a string
into a datetime object based
on the format string.

timedelta(days =30) creates a timedelta object of
30 days; the weekday() method returns an integer
for the day of the week, with Monday = 0.

Summary

* The pathlib module can greatly simplify file operations such as finding the root and
extension, moving and renaming, and matching wildcards.

« Asthe number and complexity of files increase, automated archiving solutions are vital,
and Python offers several easy ways to create them.

* You can dramatically save storage space by compressing and grooming data files.

Thiy chapter covers

« Using ETL (extract-transform-load)

Reading text data files (plain text and CSV)

Reading spreadsheet files

Normalizing, cleaning, and sorting data

Writing data files

Welcome o ETL

« The need to get data out of files, parse it, turn it into a useful format, and then do
something with it has been around for as long as there have been data files.

* In fact, there is a standard term for the process: extract-transform-load (ETL).
« The extraction refers to the process of reading a data source and parsing it, if necessary.

* The transformation can be cleaning and normalizing the data, as well as combining,
breaking up, or reorganizing the records it contains.

« The loading refers to storing the transformed data in a new place, either a different file
or a database.

Text encoding: ASCN, Unicode, and
other)

* The Unicode encoding called UTF-8 accepts the basic ASCII characters without any change
but also allows an almost unlimited set of other characters and symbols according to the
Unicode standard.

» Even with Unicode, there’ll be occasions when your text contains values that can't be
successfully encoded.

open('test.txt’, 'wb').write(bytes([65, 66, 67,255, 192,193]))

open('test.txt’, errors='ignore').read()

open('test.txt', errors='surrogateescape’).read()

(
(
open('test.txt', errors='replace').read()
(
open(

test.txt', errors='backslashreplace').read()

Unptruckured text

« Unstructured text files are the easiest sort of data to read but the hardest to extract
information from.

* Processing unstructured text can vary enormously, depending on both the nature of the
text and what you want to do with it, so any comprehensive discussion of text
processing is beyond the scope of this course.

Call me Ishmael. Some years ago--never mind how long precisely--
having little or no money in my purse, and nothing particular

to interest me on shore, I thought I would sail about a little
and see the watery part of the world. It is a way I have

of driving off the spleen and regulating the circulatiomn.
Whenever I find myself growing grim about the mouth;

whenever it is a damp, drizzly November in my soul; whenever I
find myself involuntarily pausing before coffin warehouses,

and bringing up the rear of every funeral I meet;

and especially whenever my hypos get such an upper hand cof me,

Reads all of file as
a single string Splits on two

T mgh}r_t ext = open/| "Tﬂl}h}’_ﬂl txE") Lread() newlines tﬂgEthEI"

»>»> moby paragraphs = moby text.split("\n\n")

>»>> print (mocby paragraphs[1])
There now is your insular city of the Manhattoes, belted round by wharves

as Indian isles by coral reefs--commerce surrounds it with her surf.

Right and left, the streets take yvou waterward. Ite extreme downtown
is the battery, where that noble mole is washed by waves, and cooled

by breezes, which a few hours previous were out of sight of land.

Look at the crowds of water-gazers there.

Reads all of the file
as a single string

>>> Moby text = open("mcby 01.txt").read() Makes everything

> mohf:paragraphs = mchy:text.split{“Kan“] lawercsse

>»> moby = moby paragraphs[l] .lower() <}

»»>> moby = moby.replace(".", "") Removes

>>> moby = mﬂby.replacef"f“; el Renioves periods

>>> moby words = moby.split () CoRaE

>>> print (moby words)

["there', 'nmow', 'is', 'your', 'insular', 'city', 'of', 'the', 'manhattoes,',
'belted’', 'round', 'by', 'wharves', 'as', 'indian', 'isles', 'by',
'coral', 'reefs--commerce', 'surrounds', 'it', 'with', 'her', 'surf',
'right', 'and', 'left,', 'the', 'streets', 'take', 'you', 'waterward',
'its', 'extreme', 'downtown', 'is', 'the', 'battery,', 'where', 'that',
'noble', 'mole', 'is', 'washed', 'by', 'waves,', 'and', 'cooled', 'by',
'breezes, ', 'which', 'a', 'few', 'hours', 'previous', 'were', 'out',
'of'; 'sight', 'of'; '"land', 'look', 'at', 'the', 'crowds'; ‘'of';

'water-gazers', 'there']

Defimited ylat jiles

 This file is a simple example of temperature data in delimited format:

Record Count for

State|Month Day, Year Code|Avg Daily Max Air Temperature (F)
Daily Max Air Temp (F)
T1lincis|1979/01/01|17.48|994
T11inois|1979/01/02|4.64]|994
T1linois|1979/01/03|11.05|994
T1linois|1979/01/04|9.51|994
I1linois|1979/05/15|68.42|994
T1lincis|1979/05/16|70.29|994
I1linois|1979/05/17|75.34|994
T11inois|1979/05/18|79.13|994
T1linois|1979/05/19|74.94|994

Example rolution

« Whatever character is being used as the delimiter, if you know what character it is, you

can write your own code in Python to break each line into its fields and return them as a
list.

* In the previous case, you can use the string split() method to break a line into a list of
values:

»>»>>» line = "I1linois|1979/01/01|17.48|994"
»»>» print (line.gplit(™| ")}
['I1llinois', '1979/01/01', '17.48', '9%5

']

il

The chy module

* The csv module is a perfect case of Python'’s “batteries included” philosophy.

* The csv module has been tested and optimized, and it has features that you probably

wouldn’t bother to write if you had to do it yourself, but that are truly handy and time-
saving when available.

>»>» results = []
»>»>> for line in open("temp data pipes 00a.txt"):
fields = line.strip() .split("|")

results.append(fields)

»=»> results
[['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature (F)',

'Record Count for Paily Max Air Temp (F)'], ['Illineis', '1979/01/01',
17.48', '994'], ['Illinecis, '1975/01/02', '4.64', '9894'], ['Illinois’',
"1979/01/03Y, '11.05', '994'], ['Illinois', '1979/01/04', '9.51?,
'g94'], ["Illinecis', '1979/05/15', '68.42", '994']., ['Illinois', '1979/
05/16%, *70.29', t9941'], ['"I1linois', 71979/05/17', '"75.34"', "99417,
[*I1linois', '1979/05/18', '79.13', '694'], ['Illinois', '1979/05/19',

"74.947, '9947]]

»»> import csv

>>> results = [fields for f[ields in
csv.reader (open("temp data pipes 00a.txt", newline='"'), delimiter="|")]

»>»>» results

[['State', '"Month Day, Year Code', '"Avg Daily Max Air Temperature (F)',
'"Record Count for Daily Max Air Temp (F)'], ['Illinocis', '1979/01/01°',
'17.487, '994'], ['Illinois', '1979/01/027, '4.84', '994'], ['Illinois’,
'1979/01/03", '11.05', '994'], ['Illinois', '1979/01/04', '9.51°",
'9947],. ['Illinois'; Y1979/05/157, t'ga._.42', '994'], ['Illincis', '1979/
05/167, '70.29', '994'], ['Illinois', '1979/05/17', '75.34', '994'],
["Illincis', *1979/05/18', '79.13', '994'], [*Illinois', '1979/05/1%9°",

"74.94"%, '9947]]

Ruuﬁhxl, a CHY st wﬁbfok
diclionarie)

* In the preceding examples, you got a row of data back as a list of fields.

* This result works fine in many cases, but sometimes it may be handy to get the rows
back as dictionaries where the field name is the key.

 For this use case, the csv library has a DictReader, which can take a list of fields as a
parameter or can read them from the first line of the data. If you want to open the data
with a DictReader, the code would look like this:

>»> results = [fields for fields in csv.DictReader{(open("temp data 01.csv",

newline=""})1]

»>>»> results[0]

OrderedDict ([{'Notes', ''), ('State', 'Illincois'), ('State Code', '17'),
('"Month Day, Year', 'Jan 01, 1879'}), ('Month Day, Year Code', '1979/01/
01'), ('RAvg Daily Max Air Temperature (F)', '17.48'), ('Record Count for
Daily Max Air Temp (F)', '994'), ('Min Temp for Daily Max Air Temp (F)',
'6.00"), ('Max Temp for Daily Max Air Temp (F)', '30.50'), ('Avg Daily
Min Air Temperature (F)', '2.89'}), ('Record Count for Daily Min Air Temp
(F}', '994'), ('Min Temp for Daily Min Air Temp (F)', '-13.60'), ('Max
Temp for Daily Min Air Temp (F)', '15.80'}, ('Avg Daily Max Heat Index
(F)', 'Missing'), ('Record Count for Daily Max Heat Index (F)', '0'),

('Min for Daily Max Heat Index (F)', 'Missing'), ('Max for Daily Max
Heat Index (F)', 'Missing'), ('Daily Max Heat Index (F) % Coverage',

"0.00%")])

Excef jiles

* The other common file format that | discuss in this chapter is the Excel file, which is the
format that Microsoft Excel uses to store spreadsheets.

* As it happens, Python's standard library doesn’t have a module to read or write Excel
files.

« To read that format, you need to install an external module.
 Fortunately, several modules are available to do the job.

* For this example, you use one called OpenPyXL, which is available from the Python
package repository.

* You can install it with the following command from a command line

$pip install openpyxl

>

o

>3

=2

>

from openpyxl import load workbook
wb = load workbook('temp data 0l.xlsx')
results = []
ws = wb.worksheets[0]
for row in ws.iter rows():
results.append([cell.value for cell in rowl])

>»> print (results)

[['"Notes', 'State', 'State Code', 'Month Day, ¥Year', 'Month Day, Year Code',
'Avg Daily Max Adr Temperature (F)', 'Record Count for Daily Max Air
Temp (F)', '"Min Temp for Daily Max Air Temp (F)', 'Max Temp for Dailv
Max Air Temp (F)', 'Awvg Daily Max Heat Index (F}', 'Record Count for
Daily Max Heat Index (F)', 'Min for Daily Max Heat Index (F)', 'Max for
Daily Max Heat Index (F)', 'Daily Max Heat Index (F) % Coverage']l,
[Wone, 'Illineois', 17, 'Jan 01, 1979', '1e79/01/01°7, 17.4B,|994, 6,
30.5, '"Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 'Illinois',
17, ‘'Jan 02, 1%7%', '197%/01/02', 4.64, 994, -6.4, 15.8, 'Missing', 0,
'Migsing', 'Missing', '0.00%'], [None, 'Illineis', 17, 'Jan 03, 197%',
"1979/01/03', 11.05, 994, -0.7, 24.7, 'Missing', 0, 'Missing',
'Missing', '0.00%'], [None, 'Illincis', 17, 'Jan 04, 1979', '197%/01/
g4', 9.51, 994, 0.2, 27.6, 'Missing', 0, 'Missing', 'Missing', '0.00%'],
[None, 'Illinois', 17, 'May 15, 1979', '1979/05/15', €8.42, 994, &1,
75.1, 'Missing', 0, 'Missing', 'Misesing', '0.00%'], [None, 'Illincis',
1%, 'May 16, 1579', r1g79/05/16', 70.29, 994, 53.4, 73.5, 'Missing', 0O,
'Missing', 'Missing', '0.00%'], [WNone, 'Illineois'; 17, 'May 17, 1879',
'1979/05/17', 75.34, 994, 64, 80.5, B2.6, 2, 82.4, B2.8, 'D.20%'],
[Mone, 'Illinois', 17, 'May 18, 1878", "1979/05/187, 79.13, 994, 75.5,
g82.1, 81.42, 349, 80.2, 83.4, "35.11%'], [None, '"Illinois', 17, 'May 19,
1s79', '1%79/05/19', 74.94, 994, 66.9, B3.1, B2.87, 78, B8l.6, BE.Z,

T7.85%7]]

Daiaxdwhihg,

« One common problem you’ll encounter in processing text-based data files is dirty data.

By dirty, it means that there are all sorts of surprises in the data, such as null values,
values that aren’t legal for your encoding, or extra whitespace.

* The data may also be unsorted or in an order that makes processing difficult.

* The process of dealing with situations like these is called data cleaning.

Data @“ S

cleaning
steps

' Sorting

Tey This

* How would you handle the fields with '"Missing’ as possible values for math
calculations? Can you write a snippet of code that averages one of those columns?

» What would you do with the average column at the end so that you could also report
the average coverage?

* In your opinion, would the solution to this problem be at all linked to the way that the

'‘Missing' entries were handled?

D Beware of whitespace and null
characters.

Data
cleaning N

Beware punctuation.

Issues and
pitfalls

O Break down and debug the
steps.

(Uriﬁh@ dath

* These files may be used as input for other applications and analysis, either by people or
by other applications.

 Usually, you have a particular file specification listing what fields of data should be

included, what they should be named, what format and constraints there should be for
each, and so on.

>»>> temperature data = [['State', 'Month Day, Year Code', 'Avg Daily Max Air

Temperature (F)', 'Record Count for Daily Max Air Temp (F)'],
["Il1linoisY, '1979f01/01°*, '17.48', '994'}, ['Illinecis', '1979/01/02',
*4.64"', '994']; ["Illineis’', '1979/01/03', '11.057, '9947']. ['Tllinois’
'1979/01/047, '9.51', "994'], [*Illinois', *1979/05/15', '68.42",
'994'], ['Illineois?, '1979/05/16', '70.29', '994'], ['Illincois’,
ps/17', '75.34', '594'], ['Illincis', '1979/05/18', '79.13', '994'],
['"Illinois', '1979/05/19', '74.94', '994']]

>»> csv.writer(open("temp data 03.csv", "w",
newline='")) .writerows (temperature data)

'1979/

»>»>>» fields = ['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature
(F)', '"Record Count for Daily Max Air Temp (F)']

>>> dict _writer = csv.DictWriter (open("temp data 04.csv", "w"},
fieldnames=fields)

»>>> dict writer.writeheader /()

>>> dict writer.writerows (data)

>»> del dict writer

e

=5

==

e e

e

e e

e e

from openpyxl import Workbook
data rows = [fields for fields in csv.reader(open("temp data 0l.csv"))]
wbh = Workbook ()
WS = wb.active
ws.title = "temperature data"
for row in data rows:
ws . append (row)

wb.save ("temp data 02.xlsx")

Powkuf,ihﬁ Ma/W

* If you have several related data files, or if your files are large, it may make sense to
package them in a compressed archive.

 Although various archive formats are in use, the zip file remains popular and almost
universally accessible to users on almost every platform.

Summary

» ETL (extract-transform-load) is the process of getting data from one format, making sure that
it's consistent, and then putting it in a format you can use. ETL is the basic step in most data
processing.

» Encoding can be problematic with text files, but Python lets you deal with some encoding
problems when you load files.

» Delimited or CSV files are common, and the best way to handle them is with the csv module.

» Spreadsheet files can be more complex than CSV files but can be handled much the same
way.

» Currency symbols, punctuation, and null characters are among the most common data
cleaning issues; be on the watch for them.

» Presorting your data file can make other processing steps faster.

Data over the nehwork

Thiy chapter covers

 Fetching files via FTP/SFTP, SSH/SCP, and HTTPS
» Getting data via APls
« Structured data file formats: JSON and XML

Febching pife)

« Before you can do anything with data files, you have to get them.

« Sometimes, this process is very easy, such as manually downloading a single zip archive,
or maybe the files have been pushed to your machine from somewhere else.

« Quite often, however, the process is more involved.

« Maybe a large number of files needs to be retrieved from a remote server, files need to
be retrieved regularly, or the retrieval process is sufficiently complex to be a pain to do
manually.

* In any of those cases, you might well want to automate fetching the data files with
Python.

Using Python To |etch fifed jrom an FTP
Merver

»»» import ftplib

»>>>» ftp = ftplib.FTP('tgftp.nws.ncaa.gov')
»»» ftp.login()

'230 Login successful.’

»»> ftp.cwd('data') 3>
'250 Directory successfully changed.' '250
e e

»>»>> ftp.nlst()
'ls 55 services',

['climate', 'fnmoc', 'forecasts', 'hurricane products’',
'marine', 'nsd bbsss.txt', 'msd cccec.txt', 'observatiomns', 'products’',
'public statement', 'raw', 'records',K 'summaries', 'tampa',

'watches warnings', 'zonecatalog.curr', 'zonecatalog.curr.tar']

»>»>» X = ftp.retrbinary('RETR cbservations/metar/decoded/KORD.TXT',

open('KORD.TXT', 'wb').write)

'226 Transfer complete.’

Fetching fier with SFTP

« If the data requires more security, such as in a corporate context in which business data
is being transferred over the network, it's fairly common to use SFTP.

« SFTP is a full-featured protocol that allows file access, transfer, and management over a
Secure Shell (SSH) connection.

* Python doesn’t have an SFTP/SCP client module in its standard library, but a
community-developed library called paramiko manages SFTP operations as well as SSH

connections.
>>> import paramiko
t = paramiko.Transport | (hostname, port))
; t.connect (username, password)
>»> Sftp = paramiko.SFTPClient.from transport(t)

W
i
LT

kY
T,
i

Refvieving iles over HTTPMTTPS

« The requests library is by far the easiest and most reliable way to access HTTP/HTTPS
servers from Python code.

» Again, requests is easiest to install with pip install requests.

* The following example code fetches the monthly temperature data for Heathrow
Airport since 1948 - a text file that's served via a web server.

== import requests
>»> response = requests.get ("http://www.metoffice.gov.uk/pub/data/weather/uk/
climate/stationdata/heathrowdata.txt")

>»>> print (response.text)
Heathrow (London Airport)
Location 507800E 176700N, Lat 51.479 Lon -0.449%, 25m amsl

Estimated data is marked with a * after the wvalue.

Missing data (more than 2 days missing in month) is marked by ---.

Sunshine data taken from an automatic Kipp & Zonen sensor marked with a #,
otherwise sunshine data taken from a Campbell Stokes recorder.

YVYY mm tmax tmin aft rain sun
degC degC days mm hours
1948 1 8.9 33 -—= 85.0 -=-
1948 2 7.9 . 2 -—- 26.0 -—-
1548 3 14.2 3.8 -—- 14.0 -—-
1948 = 15.4 531 - —= 35.0 -—-
1948 5 18.1 6.9 - == 57.0 -——

Fetching data via an AP

»>» ilmport requests
»>> response = requests.get ("http://marsweather.ingenology.com/vl/latest/
?format=json")

>»>» response.text

'{"report": {"terrestrial date": "2017-01-08", "sol": 1573, "ls": 295.0,
"min temp": -74.0, "min temp fahrenheit™: -101.2, "max temp": -2.0,
"max temp fahrenheit": 28.4, "pressure": 872.0, "pressure string":
"Higher", "abs humidity": null, "wind speed": null, "wind direction": "-
-", "atmo opacity”": "Sunny", "season": "Month 10", "sunrise": "2017-01-
0BT12:29:002", "sunset": "2017-01-09T00:45:00Z" }’

>»> regponse = requests.get ("http://marsweather.ingenology.com/vl/archive/

?sol=155&format=json")
>»3> response.text

'{”csunt“: 1, "mext": null, "previous": nmull, "results":
[{”terresirial_date": "2013-01-18", "sol": 155, "lg": 243.7, "min temp":
-64.45, "min temp fahremheit": -84.01, "max temp": 2.15,

"max temp fahrenheit": 35.87, "pressure": 39.175, "pressure string":
"Higher", "abs humidity": null, "wind speed": 2.0, "wind directicn":
null, "atmo opacity®: null, "seascn": "Month 9", "sunrise": null,

"sunset": null}]}"’

Structured data bol'hmh

« Although APIs sometimes serve plain text, it's much more common for data served from
APIs to be served in a structured file format.

e The two most common file formats are JSON and XML.

« Both of these formats are built on plain text but structure their contents so that they're
more flexible and able to store more complex information.

JSON data

»>> import json

»=>» import requests

>>> response = requests.get ("http://marsweather.ingenology.com/vl/latest/
?format=json")

»>> wWeather = json.loads (response.text)

>»> wWeather

{'report': {'terrestrial date': '2017-01-10', 'sol': 1575, 'ls': 296.0,
'min temp': -58.0, 'min temp fahrenmheit': -72.4, 'max temp': 0.0,
'max temp fahrenheit': None, 'pressure': B860.0, 'pressure string’:
'Higher', 'abs humidity': None, 'wind speed': None, 'wind direction': '-
-', 'atmo opacity': 'Sunny', 'season': 'Month 10', ‘'sunrise': '2017-01-
10T12:30:00Z", 'sunset': 'EDlT—Dl—llTGD:éE:GDE':‘r}

»>>» wWeather['report'] ['sol']

1575

Pretty Printing

>»>> from pprint import pprint as pp
»>>> pp(wsather)

{'report': {'abs humidity': None,
'atmo opacity': 'Sunny’,
rlgt: 286.0,
'max temp': 0.0,
'max temp fahrenheit': None,
'min temp': -58.0,
'min temp fahrenheit': -72.4,
'"pressure': B&0.0,
'pressure string': 'Higher',
'season': 'Month 10°,
'salt: 1B7h,
'sunrise': '2017-01-10T12:30:00Z°',
'sunset': '2017-01-11T00:46:00247,
'terrestrial date': '2017-01-10',

'wind direction': '--"',
'wind speed': None}}

XINL data

« XML (eXtensible Markup Language) has been around since the end of the 20th century.

« XML uses an angle-bracket tag notation similar to HTML, and elements are nested
within other elements to form a tree structure.

« XML was intended to be readable by both machines and humans, but XML is often so
verbose and complex that it's very difficult for people to understand.

* Nevertheless, because XML is an established standard, it's quite common to find data in
XML format.

« And although XML is machine-readable, it's very likely that you'll want to translate it into
something a bit easier to deal with.

<dwml xmlns:xsd="http://www.w3.0rg/2001/XMLSchema™ xmlns:xsi="http://
www.w3.org/2001/¥MLSchema-instance" version="1.0"
xs51 :noNamespaceSchemalocation="http://www.nws.noaa.gov,/forecasts/xml/
DWMLgen/schema/DWML . xs8d" »
<head=
<product srsName="WGS 1984" concise-name="glance" operational-
mode="official">
<title=
HNOAR's National Weather Service Forecast at a Glance
<ftitle>
<fisldsmeteocrological</fields
<category=forecast</category=
<creation-date refresh-frequency="PT1H">2017-01-08T02:52:41Z</creation-
dates
</product>
<gource:
<more-informaticon=http://www.nws.noaa.gov/forecasts/xml/</more-
informations=
<production-centers
Meteorological Development Laboratory
<sub-centersProduct Generaticn Branch</sub-center=
</producticon-centers>
<disclaimer=http://www.nws.noaa.gov/disclaimer.html</disclaimer=>
<creditshttp://www.weather.gov/</credit>
<credit-logoshttp://www.weather.gov/images/xml logo.gif</credit-logos
<feedback=http://www.weather.gov/feedback.php</feedback>
</sources
</heads
<data=
<location>
<location-keyspointl</location-keys=
<point latitude="41.78" longitude="-8B.65"/>
</location=
</datas
< /dwml >

How to read XML data?

« For simple data extraction, the handiest utility I've found is a library called xmltodict,
which parses your XML data and returns a dictionary that reflects the tree.

* In fact, behind the scenes it uses the standard library’s expat XML parser, parses your
XML document into a tree, and uses that tree to create the dictionary.

>>»> import xmltodict
»>»>> data = xmltodict.parse(open("observations 0l.xml") .read())

Summary

 Using a Python script may not be the best choice for fetching files. Be sure to consider
the options.

« Using the requests module is your best bet for fetching files by using HTTP/HTTPS and
Python.

* Fetching files from an APl is very similar to fetching static files.

« Parameters for APl requests often need to be quoted and added as a query string to the
request URL.

« JSON-formatted strings are quite common for data served from APls, and XML is also
used.

* Scraping sites that you don't control may not be legal or ethical and requires
consideration not to overload the server.

SCWM data

Thiy chapter covers

» Storing data in relational databases

Using the Python DB-API

Accessing databases through an Object
Relational Mapper (ORM)

Understanding NoSQL databases and how they differ from relational databases

Relalional databades

 Relational databases have long been a standard for storing and manipulating data.
* They're a mature technology and a ubiquitous one.

» Python can connect with a number relational databases, but we don't have the time or
the inclination to go through the specifics of each one in this course.

* Instead, because Python handles databases in a mostly consistent way, we are going to
illustrate the basics with one of them - sglite3 - and then discuss some differences and
considerations in choosing and using a relational database for data storages.

The Python Database AP

* Python handles SQL database access very similarly across several database
implementations because of PEP-249 (www.python.org/dev/peps/pep-0249/), which
specifies some common practices for connecting to SQL databases.

« Commonly called the Database APl or DB-API, it was created to encourage “code that
is generally more portable across databases, and a broader reach of database
connectivity.”

« Thanks to the DB-API, the examples of SQLite that you see in this chapter are quite
similar to what you'd use for PostgreSQL, MySQL, or several other databases.

3CLite: Uping the »glite3 databade

« Although it's not suited for large, high-traffic applications, sglite3 has two advantages:
« Because it's part of the standard library, it can be used anywhere you need a database
without worrying about adding dependencies.

* sqglite3 stores all of its records in a local file, so it doesn’t need both a client and server,
which would be the case for PostgreSQL, MySQL, and other larger databases.

« To use a sqlite3 database, the first thing you need is a Connection object.

« Getting a Connection object requires only calling the connect function with the name of file
that will be used to store the data.

import sglite3

conn = sqlite3.connect("datafile.db")

W 00~ 3 v bW M

N NRNNRRRRRIRRRR R
WINRP@WOWRENGODUWN AWNR®

import sglite3

def

def

def

connect_db():
conn = sqlite3.connect("datafile.db")
return conn

get_cursor(conn):
cursor = conn.cursor()
print(cursor)

return cursor

create_table(conn, cursor):
cursor.execute(
= “"create table people (id integer primary key, name text, count integer)")
cursor.execute("insert into people (name, count) values ('Bob', 1)")
cursor.execute(

"insert into people (name, count) values (?, ?)", ("Jill", 15))
cursor.execute("insert into people (name, count) values (:username, :usercount)”, {

"username”: "Joe", "usercount”: 1@})

conn.commit()

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

def

def

def

get data(conn, cursor):
result = cursor.execute("select * from people")
print(result.fetchall())
result = cursor.execute(

"select * from people where name like :name", {"name": "bob"})
print(result.fetchall())

update_data(conn, cursor):

cursor.execute("update people set count=? where name=?", (2@, "Jill"))
result = cursor.execute("select * from people")
print(result.fetchall())

get_all(conn, cursor):
result = cursor.execute("select * from people")
for row in result:

print(row)

46
47
48
49
1%
- |
52
53

if __name_ ==

m 1n

__main__":
conn = connect_db()
cursor = get cursor(conn)

create_table(conn, cursor)
get data(conn, cursor)
update_data(conn, cursor)
get data(conn, cursor)

get all(conn, cursor)

Making databade handfing eadier with
an OR

* There are a few problems with the DB-API database client libraries mentioned earlier in this
chapter and their requirement to write raw SQL.

« Different SQL databases have implemented SQL in subtly different ways.

* The second drawback is the need to use raw SQL statements.

* The need to write SQL means that you need to think in at least two languages: Python
and a specific SQL variant.

« Given those issues, people wanted a way to handle databases in Python that was easier to
manage and didn’t require anything more than writing regular Python code.

» The solution is an Object Relational Mapper (ORM), which converts, or maps, relational
database types and structures to objects in Python.

» Two of the most common ORMs in the Python world are the Django ORM and SQLAIchemy,
although of course there are many others.

QL Alchesmy

» SQLAIchemy is the other big-name ORM in the Python space.

« SQLAIchemy’s goal is to automate redundant database tasks and provide Python
object-based interfaces to the data while still allowing the developer control of the
database and access to the underlying SQL.

* You can install SQLAlIchemy in your environment with pip:

pip install sglalchemy

NodCL databades

« Although relational databases are all about normalizing data within related tables, other
approaches look at data differently.

» Quite commonly, these types of databases are referred to as NoSQL databases, because

they usually don't adhere to the row/column/table structure that SQL was created to
describe.

« Rather than handle data as collections of rows, columns, and tables, NoSQL databases can
look at the data they store as key-value pairs, as indexed documents, and even as graphs.

» Many NoSQL databases are available, all with somewhat different ways of handling data.

* In general, they're less likely to be strictly normalized, which can make retrieving information
faster and easier.

Summary

* Python has a Database API (DB-API) that provides a generally consistent interface for
clients of several relational databases.

» Using an Object Relational Mapper (ORM) can make database code even more
standard across databases.

» Using an ORM also lets you access relational databases through Python code and
objects rather than SQL queries.

» Tools such as Alembic work with ORMs to use code to make reversible changes to a
relational database schema.

« Key:value stores such as Redis provide quick in-memory data access.

« MongoDB provides scalability without the strict structure of relational databases.

Thiy chapter covers

* Python's advantages for handling data

Jupyter Notebook

* pandas

Data aggregation

Plots with matplotlib

Python ' advantages |or exploring data

* Python has become one of the leading languages for data science and continues to
grow in that area.

* However, Python isn't always the fastest language in terms of raw performance.

« Conversely, some data-crunching libraries, such as NumPy, are largely written in C and
heavily optimized to the point that speed isn't an issue.

* In addition, considerations such as readability and accessibility often outweigh pure
speed; minimizing the amount of developer time needed is often more important.

* Python is readable and accessible, and both on its own and in combination with tools
developed in the Python community, it's an enormously powerful tool for manipulating
and exploring data.

Python can be better than a spreadyheet

» Spreadsheets have been the tools of choice for ad-hoc data manipulation for decades.

» People who are skilled with spreadsheets can make them do truly impressive tricks:
spreadsheets can combine different but related data sets, pivot tables, use lookup tables to
link data sets, and much more.

» But although people everywhere get a vast amount of work done with them every day,
spreadsheets do have limitations, and Python can help you go beyond those limitations;
* Most spreadsheet software has a row limit—currently, about 1 million rows.
» Spreadsheets are two-dimensional grids, rows and columns, or at best stacks of grids,

which limits the ways you can manipulate and think about complex data.

« With Python, you can code your way around the limitations of spreadsheets and manipulate
data the way you want.

Python anul pandas

* One of the now-standard tools for handling data in Python - pandas - was created to
automate the boring heavy lifting of handling data sets.

» pandas was created to make manipulating and analyzing tabular or relational data easy
by providing a standard framework for holding the data, with convenient tools for
frequent operations.

 As aresult, it's almost more of an extension to Python than a library, and it changes the
way you can interact with data.

* The plus side is that after you grok how pandas work, you can do some impressive
things and save a lot of time.

stalling panday

« pandas is easy to install with pip.

* It's often used along with matplotlib for plotting, so you can install both tools from the
command line with this code:

pip install pandas matplotlib

A data frame is a two-dimensional grid, rather similar to a relational
database table except in memory.

Loading and saving data with pandas.

Data cleanin
9 Data cleaning with a data frame.

Next steps —

let’s crunch

i t I Data Merging data frames.
. aggregation and [REECiyeeErS
manipulation Grouping and aggregation.

Plotting data Visualization

Summary

« Python offers many benefits for data handling, including the ability to handle very large
data sets and the flexibility to handle data in ways that match your needs.

« Jupyter notebook is a useful way to access Python via a web browser, which also makes
improved presentation easier.

* pandas is a tool that makes many common data-handling operations much easier,
including cleaning, combining, and summarizing data.

* pandas also makes simple plotting much easier.

Thank ljow!

