
Metaclasses



[Metaclasses] are deeper magic than 99% of users 
should ever worry about. If you wonder whether 
you need them, you don’t (the people who 
actually need them know with certainty that they 
need them, and don’t need an explanation about 
why). 

TIM PETERS – VETERAN PYTHON CORE DEVELOPER



To Metaclass or Not to Metaclass

 In other words, metaclasses are primarily intended for a subset of programmers 
building APIs and tools for others to use. In many (if not most) cases, they are 
probably not the best choice in applications work. 

 Still, metaclasses have a wide variety of potential roles, and it’s important to 
know when they can be useful. 

 For example, they can be used to enhance classes with features like tracing, 
object persistence, exception logging, and more. 

 They can also be used to construct portions of a class at runtime based upon 
configuration files, apply function decorators to every method of a class 
generically, verify conformance to expected interfaces, and so on.



Metaclasses

 It allows us to insert logic to be run automatically at the end of a class 
statement, when a class object is being created. 

 Though strongly reminiscent of class decorators, the metaclass mechanism 
doesn’t rebind the class name to a decorator callable’s result, but rather routes 
creation of the class itself to specialized logic.

 In other words, metaclasses are ultimately just another way to define 
automatically run code. 



Decorators vs Metaclasses

 Class decorators run after the decorated class has already been created. Thus, 
they are often used to add logic to be run at instance creation time.

 Metaclasses, by contrast, run during class creation to make and return the new 
client class. Therefore, they are often used for managing or augmenting classes 
themselves and can even provide methods to process the classes that are 
created from them, via a direct instance relationship. 

 For example, metaclasses can be used to add decoration to all methods of 
classes automatically, register all classes in use to an API, add user-interface 
logic to classes automatically, create or extend classes from simplified 
specifications in text files, and so on. 



The Metaclass Model

 Classes are instances of type.

 In Python 3.X, user-defined class objects are instances of the object named type, 
which is itself a class. 

 In Python 2.X, new-style classes inherit from object, which is a subclass of type; 
classic classes are instances of type and are not created from a class.

 Metaclasses are subclasses of type.



Classes are Types, and Types are Classes

 Types are defined by classes that derive from type. 

 User-defined classes are instances of type classes. 

 User-defined classes are types that generate instances of their own. 



Metaclasses Are Subclasses of Type 

 type is a class that generates user-defined classes. 

 Metaclasses are subclasses of the type class. 

 Class objects are instances of the type class, or a subclass thereof. 

 Instance objects are generated from a class.

In other words, to control the way classes are created and augment their behavior, 
all we need to do is specify that a user-defined class be created from a user-
defined metaclass instead of the normal type class



Class Statement Protocol 

 We’ve already learned that when Python reaches a class statement, it runs its 
nested block of code to create its attributes - all the names assigned at the top 
level of the nested code block generate attributes in the resulting class object. 

 These names are usually method functions created by nested defs, but they can 
also be arbitrary attributes assigned to create class data shared by all instances.

 Technically speaking, Python follows a standard protocol to make this happen at 
the end of a class statement, and after running all its nested code in a 
namespace dictionary corresponding to the class’s local scope, Python calls the 
type object to create the class object like this. 



Class Statement Protocol 

 The type object in turn defines a __call__ operator overloading method that 
runs two other methods when the type object is called.

 The __new__ method creates and returns the new class object, and then the 
__init__ method initializes the newly created object. As we’ll see in a moment, 
these are the hooks that metaclass subclasses of type generally use to 
customize classes.





Declaring Metaclasses

 As we’ve just seen, classes are created by the type class by default. 

 To tell Python to create a class with a custom metaclass instead, you simply 
need to declare a metaclass to intercept the normal instance creation call in a 
user-defined class. 

 How you do so depends on which Python version you are using.



Declaration in 3.X



Declaration in 2.X



Coding Metaclasses

 Metaclasses are coded with normal Python class statements and semantics. 

 They are simply classes that inherit from type. 

 Their only substantial distinctions are that Python calls them automatically at the 
end of a class statement, and that they must adhere to the interface expected 
by the type superclass.



A Basic Metaclass

 Perhaps the simplest metaclass you can code is simply a subclass of type with a 
__new__ method that creates the class object by running the default version in 
type. 

 A metaclass __new__ like this is run by the __call__ method inherited from 
type; it typically performs whatever customization is required and calls the type 
superclass’s __new__ method to create and return the new class object.





What happened?

 Here, Spam inherits from Eggs and is an instance of MetaOne, but X is an 
instance of and inherits from Spam. 

 When this code is run with Python 3.X, notice how the metaclass is invoked at 
the end of the class statement, before we ever make an instance - metaclasses
are for processing classes, and classes are for processing normal instances.



Inheritance and Instance

 Metaclasses inherit from the type class (usually) .

 Metaclass declarations are inherited by subclasses.

 Metaclass attributes are not inherited by class instances.

 Metaclass attributes are acquired by classes.





Metaclass Versus Superclass

 In even simpler terms, watch what happens in the following: as an instance of 
the A metaclass type, class B acquires A’s attribute, but this attribute is not made 
available for inheritance by B’s own instances—the acquisition of names by 
metaclass instances is distinct from the normal inheritance used for class 
instances: 



Metaclass Versus Superclass

 By contrast, if A morphs from metaclass to superclass, then names inherited 
from an A superclass become available to later instances of B, and are located 
by searching namespace dictionaries in classes in the tree—that is, by checking 
the __dict__ of objects in the method resolution order (MRO)



Metaclass Methods

 Just as important as the inheritance of names, methods in metaclasses process 
their instance classes - not the normal instance objects we’ve known as “self,” 
but classes themselves. 

 This makes them similar in spirit and form to the class methods.





Metaclass Methods Versus Class 
Methods

 Though they differ in inheritance visibility, much like class methods, metaclass
methods are designed to manage class-level data. 

 In fact, their roles can overlap - much as metaclasses do in general with class 
decorators - but metaclass methods are not accessible except through the 
class, and do not require an explicit classmethod class-level data declaration in 
order to be bound with the class. 

 In other words, metaclass methods can be thought of as implicit class methods, 
with limited visibility





Operator Overloading in Metaclass
Methods

 Just like normal classes, metaclasses may also employ operator overloading to 
make built-in operations applicable to their instance classes. 

 The __getitem__ indexing method in the following metaclass, for example, is a 
metaclass method designed to process classes themselves - the classes that are 
instances of the metaclass, not those classes’ own later instances. 

 In fact, per the inheritance algorithms sketched earlier, normal class instances 
don’t inherit names acquired via the metaclass instance relationship at all, 
though they can access names present on their own classes.





Example: Adding Methods to 
Classes

p.1391



Example: Applying Decorators to 
Methods

p.1400


