Metaclasses

L [Metaclasses] are deeper magic than 99% of users
should ever worry about. If you wonder whether
you need them, you don't (the people who

actually need them know with certainty that they
need them, and don't need an explanation about 59
why).

TIM PETERS — VETERAN PYTHON CORE DEVELOPER

To Metaclass or Not to Metaclass

In other words, metaclasses are primarily intended for a subset of programmers
building APIs and tools for others to use. In many (if not most) cases, they are
probably not the best choice in applications work.

Still, metaclasses have a wide variety of potential roles, and it's important to
know when they can be useful.

For example, they can be used to enhance classes with features like tracing,
object persistence, exception logging, and more.

They can also be used to construct portions of a class at runtime based upon
configuration files, apply function decorators to every method of a class
generically, verify conformance to expected interfaces, and so on.

Metaclasses

It allows us to insert logic to be run automatically at the end of a class
statement, when a class object is being created.

Though strongly reminiscent of class decorators, the metaclass mechanism
doesn't rebind the class name to a decorator callable’s result, but rather routes
creation of the class itself to specialized logic.

In other words, metaclasses are ultimately just another way to define
automatically run code.

Decorators vs Metaclasses

Class decorators run after the decorated class has already been created. Thus,
they are often used to add logic to be run at instance creation time.

Metaclasses, by contrast, run during class creation to make and return the new
client class. Therefore, they are often used for managing or augmenting classes
themselves and can even provide methods to process the classes that are
created from them, via a direct instance relationship.

For example, metaclasses can be used to add decoration to all methods of
classes automatically, register all classes in use to an API, add user-interface
logic to classes automatically, create or extend classes from simplified
specifications in text files, and so on.

The Metaclass Model

Classes are instances of type.

In Python 3.X, user-defined class objects are instances of the object named type,
which is itself a class.

In Python 2.X, new-style classes inherit from object, which is a subclass of type;
classic classes are instances of type and are not created from a class.

Metaclasses are subclasses of type.

Classes are Types, and Types are Classes

Types are defined by classes that derive from type.
User-defined classes are instances of type classes.

User-defined classes are types that generate instances of their own.

Metaclasses Are Subclasses of Type

type is a class that generates user-defined classes.
Metaclasses are subclasses of the type class.
Class objects are instances of the type class, or a subclass thereof.

Instance objects are generated from a class.

In other words, to control the way classes are created and augment their behavior,
all we need to do is specify that a user-defined class be created from a user-
defined metaclass instead of the normal type class

Class Statement Protocol

We've already learned that when Python reaches a class statement, it runs its
nested block of code to create its attributes - all the names assigned at the top
level of the nested code block generate attributes in the resulting class object.

These names are usually method functions created by nested defs, but they can
also be arbitrary attributes assigned to create class data shared by all instances,

Technically speaking, Python follows a standard protocol to make this happen at
the end of a class statement, and after running all its nested code in a
namespace dictionary corresponding to the class's local scope, Python calls the
type object to create the class object like this.

class = type(classname, superclasses, attributedict)

Class Statement Protocol

The type object in turn defines a __call__ operator overloading method that
runs two other methods when the type object is called.

type. new (typeclass, classname, superclasses, attributedict)
type. init (class, classname, superclasses, attributedict)

The __new__ method creates and returns the new class object, and then the
__init__ method initializes the newly created object. As we'll see in a moment,
these are the hooks that metaclass subclasses of type generally use to
customize classes.

For example, given a class definition like the following for Spam:

class Eggs: ... # Inherited names here

class Spam(Eggs): # Inherits from Eggs
data = 1 # Class data attribute
def meth(self, arg): # Class method attribute
return self.data + arg

Python will internally run the nested code block to create two attributes of the class
(data and meth), and then call the type object to generate the class object at the end of
the class statement:

Spam = type('Spam', (Eggs,), {'data': 1, 'meth': meth, ' module ': ' main_'})

Declaring Metaclasses

As we've just seen, classes are created by the type class by default.

To tell Python to create a class with a custom metaclass instead, you simply

need to declare a metaclass to intercept the normal instance creation call in a
user-defined class.

How you do so depends on which Python version you are using.

Declaration in 3.X

In Python 3.X, list the desired metaclass as a keyword argument in the class header:
class Spam(metaclass=Meta): # 3.X version (only)
Inheritance superclasses can be listed in the header as well. In the following, for ex-

ample, the new class Spam inherits from superclass Eggs, but is also an instance of and
is created by metaclass Meta:

class Spam(Eggs, metaclass=Meta): # Normal supers OK: must list first

In this form, superclasses must be listed before the metaclass; in ettect, the ordering
rules used for keyword arguments in function calls apply here.

Declaration in 2.X

We can get the same effect in Python 2.X, but we must specity the metaclass ditterently
—using a class attribute instead of a keyword argument:

class Spam(object): # 2. X version (only), object optional?
__metaclass = Meta
class Spam(Eggs, object): # Normal supers OK: object suggested

__metaclass = Meta

Coding Metaclasses

Metaclasses are coded with normal Python class statements and semantics.

They are simply classes that inherit from type.

Their only substantial distinctions are that Python calls them automatically at the
end of a class statement, and that they must adhere to the interface expected

by the type superclass.

A Basic Metaclass

Perhaps the simplest metaclass you can code is simply a subclass of type with a
__new__ method that creates the class object by running the default version in

type.

A metaclass __new__ like this is run by the __call__ method inherited from
type; it typically performs whatever customization is required and calls the type
superclass’'s __new__ method to create and return the new class object.

class Meta(type):
def new (meta, classname, supers, classdict):
Run by inherited type.__call__
return type. new_ (meta, classname, supers, classdict)

class MetaOne(type):
def _new_ (meta, classname, supers, classdict):
print('In MetaOne.new:', meta, classname, supers, classdict, sep="\n...")
return type. new_ (meta, classname, supers, classdict)

class Eggs:
pass

print('making class')
class Spam(Eggs, metaclass=MetaOne): # Inherits from Eggs, instance of MetaOne
data = 1 # Class data attribute
def meth(self, arg): # Class method attribute
return self.data + arg

print('making instance')
X = Spam()
print('data:', X.data, X.meth(2))

What happened?

Here, Spam inherits from Eggs and is an instance of MetaOne, but X is an
instance of and inherits from Spam.

When this code is run with Python 3.X, notice how the metaclass is invoked at
the end of the class statement, before we ever make an instance - metaclasses
are for processing classes, and classes are for processing normal instances.

Inheritance and Instance

Metaclasses inherit from the type class (usually) .
Metaclass declarations are inherited by subclasses.
Metaclass attributes are not inherited by class instances.

Metaclass attributes are acquired by classes.

File metainstance.py

class MetaOne(type):
def new (meta, classname, supers, classdict): # Redefine type method
print('In MetaOne.new:', classname)
return type. new (meta, classname, supers, classdict)
def toast(self):
return 'toast’

class Super(metaclass=MetaOne): # Metaclass inherited by subs too
def spam(self): # MetaOne run twice for two classes
return 'spam’

class Sub(Super): # Superclass: inheritance versus instance
def eggs(self): # Classes inherit from superclasses
return 'eggs’ # But not from metaclasses

Metaclass Versus Superclass

In even simpler terms, watch what happens in the following: as an instance of
the A metaclass type, class B acquires A's attribute, but this attribute is not made
available for inheritance by B's own instances—the acquisition of names by
metaclass instances is distinct from the normal inheritance used for class

instances:
>>> class A(type): attr = 1
>>> class B(metaclass=A): pass # B is meta instance and acquires meta attr
>> I = B() # 1 inherits from class but not meta!
>>> B.attr
|
>>> I.attr

AttributeError: 'B' object has no attribute 'attr’
>>> 'attr' in B.__dict_, 'attr' in A.__dict__
(False, True)

Metaclass Versus Superclass

By contrast, if A morphs from metaclass to superclass, then names inherited
from an A superclass become available to later instances of B, and are located
by searching namespace dictionaries in classes in the tree—that is, by checking
the __dict__ of objects in the method resolution order (MRO)

>>> class A: attr = 1

>>> class B(A): pass # 1 inherits from class and supers
»> I = B()

>>> B.attr

1

>>> I.attr

1

>>> 'attr' in B.__dict_, 'attr' in A. dict__

(False, True)

Metaclass Methods

Just as important as the inheritance of names, methods in metaclasses process
their instance classes - not the normal instance objects we've known as “self,”

but classes themselves.

This makes them similar in spirit and form to the class methods.

>>> class A(type):
def x(cls): print('ax', cls)
def y(cls): print('ay', cls)

>>> class B(metaclass=A):
def y(self): print('by', self)
def z(self): print('bz', self)

>>> B.X
<bound method A.x of <class
>>> B.y

<function B.y at 0x0295F1E0>
>>> B.z

<function B.z at 0x0295F378>
>>> B.x()
ax <class

__main__.B'>»>

__main__.B">

>>> I = B()

>>»> T.y()

by < main_ .B object at 0x02963BEO>
> T2()

bz <_main__.B object at 0x02963BEO>
>> I.x()

AttributeError: 'B' object has no attribute 'x'

A metaclass (instances=classes)
vy is overridden by instance B

A normal class (normal instances)
Namespace dict holds y and z

x acquired from metaclass

y and z defined in class itself

Metaclass method call: gets cls

Instance method calls: get inst

Instance doesn't see meta names

Metaclass Methods Versus Class

Methods

Though they differ in inheritance visibility, much like class methods, metaclass
methods are designed to manage class-level data.

In fact, their roles can overlap - much as metaclasses do in general with class
decorators - but metaclass methods are not accessible except through the

class, and do not require an explicit classmethod class-level data declaration in
order to be bound with the class.

In other words, metaclass methods can be thought of as implicit class methods,
with limited visibility

>>> class A(type):
def a(cls): # Metaclass method: gets class
cls.x = cls.y + cls.z

>>> class B(metaclass=A):
Yy = Wy B2
@classmethod # Class method: gets class
def b(cls):
return cls.x

>>> B.a() # Call metaclass method; visible to class only

¥3> B # Creates class data on B, accessible to normal instances
33

>>> I = B()

>»>> I.x, 1.y, 1.2
(33, 11, 22)

33> I.B() # Class method: sends class, not instance; visible to instance
33
3»> T.al) # Metaclass methods: accessible through class only

AttributeError: 'B' obiject has no attribute 'a’

Operator Overloading in Metaclass

Methods

Just like normal classes, metaclasses may also employ operator overloading to
make built-in operations applicable to their instance classes.

The __getitem__ indexing method in the following metaclass, for example, is a
metaclass method designed to process classes themselves - the classes that are
instances of the metaclass, not those classes” own later instances.

In fact, per the inheritance algorithms sketched earlier, normal class instances
don't inherit names acquired via the metaclass instance relationship at all,
though they can access names present on their own classes.

>>> class A(type):
def getitem (cls, i): # Meta method for processing classes:
return cls.data[i] # Built-ins skip class, use meta
Explicit names search class + meta
>>> class B(metaclass=A): # Data descriptors in meta used first
data = 'spam’
>>> B[0] # Metaclass instance names: visible to class only
-

>>> B.__getitem__
<bound method A. getitem of <class ' main_ .B'>>

>>> I = B()

>>> I.data, B.data # Normal inheritance names: visible to instance and class
('spam', 'spam')

>> I[0]

TypeError: 'B' object does not support indexing

Example: Adding Methods to
Classes

Example: Applying Decorators to
Methods

