Decorators

What's a Decorator?

Decoration is a way to specify management or augmentation code for
functions and classes.

Decorators themselves take the form of callable objects (e.g., functions) that
process other callable objects.

Function decorators, added in Python 2.4, do name rebinding at function
definition time, providing a layer of logic that can manage functions and
methods, or later calls to them.

Class decorators, added in Python 2.6 and 3.0, do name rebinding at class
definition time, providing a layer of logic that can manage classes, or the
Instances created by later calls to them.

What's a Decorator?

In short, decorators provide a way to insert automatically run code at the end of
function and class definition statements - at the end of a def for function
decorators, and at the end of a class for class decorators.

Managing Calls and Instances

Call proxies Function decorators install wrapper objects to intercept later
function calls and process them as needed, usually passing
the call on to the original function to run the managed action.

Interface proxies Class decorators install wrapper objects to intercept later
instance creation calls and process them as required, usually
passing the call on to the original class to create a managed
Instance.

Decorators achieve these effects by automatically rebinding function and class
names to other callables, at the end of def and class statements. When later
invoked, these callables can perform tasks such as tracing and timing function calls,
Mmanaging access to class instance attributes, and so on.

Managing Functions and Classes

Function managers

Class managers

Function decorators can also be used to manage function objects,
instead of or in addition to later calls to them - to register a function
to an API, for instance. Our primary focus here, though, will be on
their more commonly used call wrapper application.

Class decorators can also be used to manage class objects directly,
instead of or in addition to instance creation calls - to augment a
class with new methods, for example. Because this role intersects
strongly with that of metaclasses, we'll see additional use cases in the
next chapter. As we'll find, both tools run at the end of the class
creation process, but class decorators often offer a lighter-weight
solution.

Managing Functions and Classes

In other words, function decorators can be used to manage both function calls
and function objects, and class decorators can be used to manage both class
Instances and classes themselves.

By returning the decorated object itself instead of a wrapper, decorators
become a simple post-creation step for functions and classes.

Regardless of the role they play, decorators provide a convenient and explicit
way to code tools useful both during program development and in live
production systems.

Using and Defining Decorators

Python itself comes with built-in decorators that have specialized roles - static
and class method declaration, property creation, and more.

In addition, many popular Python toolkits include decorators to perform tasks
such as managing database or user-interface logic.

For more general tasks, programmers can code arbitrary decorators of their
own.

For example, function decorators may be used to augment functions with code
that adds call tracing or logging, performs argument validity testing during
debugging, automatically acquires and releases thread locks, times calls made
to functions for optimization, and so on.

Why Decorators?

Decorators have a very explicit syntax, which makes them easier to spot than
helper function calls that may be arbitrarily far-removed from the subject
functions or classes.

Decorators are applied once, when the subject function or class is defined; it's
not necessary to add extra code at every call to the class or function, which
may have to be changed in the future.

Because of both of the prior points, decorators make it less likely that a user of
an APl will forget to augment a function or class according to APl requirements.

Function Decorators

A function decorator is a kind of runtime declaration about the function whose
definition follows.

The decorator is coded on a line just before the def statement that defines a
function or method, and it consists of the @ symbol followed by a reference to
a metafunction - a function (or other callable object) that manages another

function.
@decorator # Decorate function def F(arg):
def F(arg):
. F = decorator(F) # Rebind function name to decorator result

F(99) # Call function F(99) # Essentially calls decorator(F)(99)

Class Decorators

Class decorators are strongly related to function decorators; in fact, they use
the same syntax and very similar coding patterns.

Rather than wrapping individual functions or methods, though, class decorators
are a way to manage classes, or wrap up instance construction calls with extra
logic that manages, or augments instances created from a class. In the latter
role, they may manage full object interfaces.

@decorator # Decorate class class C:
class C: Y

et i |:> C = decorator(C) # Rebind class name to decorator result
x = C(99) # Make an instance x = C(99) # Essentially calls decorator(C)(99)

Decorator Nesting

To support multiple nested steps of augmentation this way, decorator syntax

allows you to add multiple layers of wrapper logic to a decorated function or
method.

When this feature is used, each decorator must appear on a line of its own.
Decorator syntax of this form.

@A

def F(...):
68 |:>
ec f = A(B(C(F)))

def f(...):

Decorator Arguments

Both function and class decorators can also seem to take arguments, although
really these arguments are passed to a callable that in effect returns the
decorator, which in turn returns a callable. By nature, this usually sets up
multiple levels of state retention.

@decorator(A, B) def F(arg):
def F(arg):
- |:> F = decorator(A, B)(F) # Rebind F to result of decorator's return value
F(99) # Essentially calls decorator(A, B)(F)(99)

F(99)

Coding Function Decorators — Tracing

Calls

File decoratorl.py

class tracer:

def init_(self, func): # On @ decoration: save original func
self.calls = 0
self.func = func

def call (self, *args): # On later calls: run original func
self.calls += 1
print('call %s to %s' % (self.calls, self.func. name_))
self.func(*args)

@tracer
def spam(a, b, c): # spam = tracer(spam)
print(a + b + ¢) # Wraps spam in a decorator object

Coding Function Decorators — Tracing

Calls

>>> from decorator1l import spam

>>> spam(1, 2, 3)
call 1 to spam
6

>>> spam('a', 'b', 'c')
call 2 to spam
abc

>>> spam.calls
2
>>> spam

Really calls the tracer wrapper object

Invokes __call __in class

Number calls in wrapper state information

<decoratorl.tracer object at 0x02D9A730>

Nondecorator Equivalent

calls = 0
def tracer(func, *args):
global calls
calls += 1
print('call %s to %s' % (calls, func. name))
func(*args)

def spam(a, b, c):
print(a, b, c)

>>> spam(1, 2, 3) # Normal nontraced call: accidental?
123

>>> tracer(spam, 1, 2, 3) # Special traced call without decorators
call 1 to spam
123

Coding Class Decorators — Singleton

Classes

3.X and 2.X: global table

instances = {}

def singleton(aClass): # On @ decoration
def onCall(*args, **kwargs): # On instance creation
if aClass not in instances: # One dict entry per class

instances[aClass] = aClass(*args, **kwargs)
return instances[aClass]
return onCall

@singleton
class Person:

def init (self, name, hours, rate):

self.name = name

self.hours = hours

self.rate = rate
def pay(self):

return self.hours * self.rate

@singleton
class Spam:

def init (self, val):

self.attr = val

bob = Person('Bob', 40, 10)
print(bob.name, bob.pay())

sue = Person('Sue', 50, 20)
print(sue.name, sue.pay())

X = Spam(val=42)
Y = Spam(99)
print(X.attr, Y.attr)

Person = singleton(Person)
Rebinds Person to onCall
onCall remembers Person

Spam = singleton(Spam)
Rebinds Spam to onCall
onCall remembers Spam

Really calls onCall

Same, single object

One Person, one Spam

c:\code> python singletons.py
Bob 400
Bob 400

42 42

