
Decorators



What’s a Decorator?

 Decoration is a way to specify management or augmentation code for 
functions and classes. 

 Decorators themselves take the form of callable objects (e.g., functions) that 
process other callable objects. 

 Function decorators, added in Python 2.4, do name rebinding at function 
definition time, providing a layer of logic that can manage functions and 
methods, or later calls to them.

 Class decorators, added in Python 2.6 and 3.0, do name rebinding at class 
definition time, providing a layer of logic that can manage classes, or the 
instances created by later calls to them.



What’s a Decorator?

 In short, decorators provide a way to insert automatically run code at the end of 
function and class definition statements - at the end of a def for function 
decorators, and at the end of a class for class decorators. 



Managing Calls and Instances

Proxies Descriptions

Call proxies Function decorators install wrapper objects to intercept later 
function calls and process them as needed, usually passing 
the call on to the original function to run the managed action. 

Interface proxies Class decorators install wrapper objects to intercept later 
instance creation calls and process them as required, usually 
passing the call on to the original class to create a managed 
instance.

Decorators achieve these effects by automatically rebinding function and class 
names to other callables, at the end of def and class statements. When later 
invoked, these callables can perform tasks such as tracing and timing function calls, 
managing access to class instance attributes, and so on.



Managing Functions and Classes

Managers Descriptions

Function managers Function decorators can also be used to manage function objects, 
instead of or in addition to later calls to them - to register a function 
to an API, for instance. Our primary focus here, though, will be on 
their more commonly used call wrapper application.

Class managers Class decorators can also be used to manage class objects directly, 
instead of or in addition to instance creation calls - to augment a 
class with new methods, for example. Because this role intersects 
strongly with that of metaclasses, we’ll see additional use cases in the 
next chapter. As we’ll find, both tools run at the end of the class 
creation process, but class decorators often offer a lighter-weight 
solution. 



Managing Functions and Classes

 In other words, function decorators can be used to manage both function calls 
and function objects, and class decorators can be used to manage both class 
instances and classes themselves. 

 By returning the decorated object itself instead of a wrapper, decorators 
become a simple post-creation step for functions and classes.

 Regardless of the role they play, decorators provide a convenient and explicit 
way to code tools useful both during program development and in live 
production systems.



Using and Defining Decorators

 Python itself comes with built-in decorators that have specialized roles - static 
and class method declaration, property creation, and more. 

 In addition, many popular Python toolkits include decorators to perform tasks 
such as managing database or user-interface logic. 

 For more general tasks, programmers can code arbitrary decorators of their 
own. 

 For example, function decorators may be used to augment functions with code 
that adds call tracing or logging, performs argument validity testing during 
debugging, automatically acquires and releases thread locks, times calls made 
to functions for optimization, and so on. 



Why Decorators?

 Decorators have a very explicit syntax, which makes them easier to spot than 
helper function calls that may be arbitrarily far-removed from the subject 
functions or classes.

 Decorators are applied once, when the subject function or class is defined; it’s 
not necessary to add extra code at every call to the class or function, which 
may have to be changed in the future.

 Because of both of the prior points, decorators make it less likely that a user of 
an API will forget to augment a function or class according to API requirements.



Function Decorators 

 A function decorator is a kind of runtime declaration about the function whose 
definition follows. 

 The decorator is coded on a line just before the def statement that defines a 
function or method, and it consists of the @ symbol followed by a reference to 
a metafunction - a function (or other callable object) that manages another 
function.



Class Decorators

 Class decorators are strongly related to function decorators; in fact, they use 
the same syntax and very similar coding patterns. 

 Rather than wrapping individual functions or methods, though, class decorators 
are a way to manage classes, or wrap up instance construction calls with extra 
logic that manages, or augments instances created from a class. In the latter 
role, they may manage full object interfaces.



Decorator Nesting

 To support multiple nested steps of augmentation this way, decorator syntax 
allows you to add multiple layers of wrapper logic to a decorated function or 
method. 

 When this feature is used, each decorator must appear on a line of its own. 
Decorator syntax of this form.



Decorator Arguments

 Both function and class decorators can also seem to take arguments, although 
really these arguments are passed to a callable that in effect returns the 
decorator, which in turn returns a callable. By nature, this usually sets up 
multiple levels of state retention.



Coding Function Decorators – Tracing 
Calls



Coding Function Decorators – Tracing 
Calls



Nondecorator Equivalent



Coding Class Decorators – Singleton 
Classes






