
MACHINE LEARNING 
WITH .NET

Asmaliza Ahzan @ Emma

asmaliza@iverson.com.my



ANOMALY DETECTION MODEL
CHAPTER 6



ANOMALY DETECTION 

• Anomaly detection is one of the newer additions to ML.NET, and specifically, time-series 
transforms.

• Without needing to do manual spot-checking, anomaly detection algorithms train on this data 
and determine whether there are any anomalies.

• This task creates an anomaly detection model by using Principal Component Analysis (PCA). 
PCA-Based Anomaly Detection helps you build a model in scenarios where it is easy to obtain 
training data from one class, such as valid transactions, but difficult to obtain sufficient 
samples of the targeted anomalies.



PCA-BASED ANOMALY DETECTION 

• An established technique in machine learning, PCA is frequently used in exploratory data 
analysis because it reveals the inner structure of the data and explains the variance in the data. 

• PCA works by analyzing data that contains multiple variables. 

• It looks for correlations among the variables and determines the combination of values that 
best captures differences in outcomes. 

• These combined feature values are used to create a more compact feature space called the 
principal components.



EXAMPLE SCENARIOS

• Identifying transactions that are potentially fraudulent.

• Learning patterns that indicate that a network intrusion has occurred.

• Finding abnormal clusters of patients.

• Checking values entered into a system.



DIVING INTO THE RANDOMIZED PCA 
TRAINER

• The randomized PCA trainer is the only traditional trainer for anomaly detection found in 
ML.NET currently.

• The randomized PCA trainer requires normalization of the values; however, caching is not 
necessary and no additional NuGet packages are required to utilize the trainer.

• The randomized PCA trainer requires normalization of the values; however, caching is not 
necessary and no additional NuGet packages are required to utilize the trainer.

• The algorithm finds edge cases if the computed error is not close to 0. If it finds the error is 
close to 0, it is considered a normal data point (that is, a non-anomaly).



DIVING INTO TIME SERIES TRANSFORMS

• Time series support was added as a series of transforms to be applied to your training and test 
data. 

• Time series, as mentioned previously, is also one of the newer additions to ML.NET, being 
added in 1.2.0.



TIMESERIESCATALOG CLASS

Class Descriptions

DetectAnomalyBySrCnn Detects anomalies with the SRCNN algorithm

DetectChangePointBySsa Detects anomalies with the Singular Spectrum Analysis 
(SSA) algorithm on change points

DetectIidChangePoint Detects changes to predict change points with an
independent identically distributed (i.i.d) algorithm

DetectIidSpike Detects changes with an i.i.d algorithm but predicts spikes
instead of change points

DetectSpikeBySsa Detects spikes using the SSA algorithm

ForecastBySsa Uses the SSA algorithm for a singular variable- (commonly
referred to as univariate-) based time series forecasting



CREATING A TIME SERIES APPLICATION

• The application we will be creating is a network traffic anomaly detector. 

• Given a set of attributes relating to the network traffic amount (in bytes), the application will 
use that data to find anomalies in the amount of traffic for a given checkpoint.

• As with other applications, this is not meant to power the next ML network traffic anomaly 
detection product; however, it will show you how to use time series in ML.NET, specifically to 
detect spikes with SSA.



PREDICTOR OUTPUT

• The output includes the three data points: HOST, TIMESTAMP, and TRANSFER. 

• The new additions are ALERT, SCORE, and P-VALUE. 

• ALERT values of nonzero indicate an anomaly.

• SCORE is a numeric representation of the anomaly score; a higher value indicates a spike. 

• PVALUE, a value between 0 and 1, is the distance between the current point and the average 
point. A value closer or equal to 0 is another indication of a spike.



CREATING AN ANOMALY DETECTION 
APPLICATION

• The application we will be creating is a login anomaly detector. 

• Given a set of attributes relating to the login, the application will use that data to find 
anomalies such as unusual login times.



AREA UNDER THE ROC CURVE

• This computed area is equal to the chance that the algorithm, randomized PCA, in our case, 
scores a positive instance higher than a negative one, both chosen randomly to better 
evaluate the data. 

• The number returned closer to 100% is the ideal value, while if it is closer to 0%, you will more 
than likely have significant false positives. 

• You might remember our earlier example application getting 78%. This means that there was 
a 22% chance of a false positive; the following outlines some suggestions to improve the 
model and should reduce this number.



AREA UNDER 
THE ROC CURVE

• The following diagram visually 
reflects both a random guessing 
line and an arbitrary data curve. 

• The area under the data curve in 
between the random guessing 
line is the area under the ROC 
curve data metric.



DETECTION RATE AT FALSE POSITIVE COUNT

• The detection rate at false positive count property is the detection rate of K false positives.

• A false positive in an anomaly detection scenario would be to consider a data point an 
anomaly when, in fact, it was not.

• This rate is computed as follows:

Detection Rate of K False Positives = X / Y

• Here, X is calculated to be the top test samples based on the scores previously described in 
the anomaly detection example (sorted in descending order). 

• These are considered the top true positives (that is, more likely to be actual anomalies).



DETECTION RATE AT FALSE POSITIVE COUNT

• Y is calculated to be the total number of anomalies in the test data regardless of the score 
value (not filtering to points that look suspicious or not). 

• In theory, this number could be very high if the number of false positives is high in your 
training data. 

• As you build production models with randomized PCA, ensure your data represents as close 
to production as possible to avoid overfitting or underfitting to anomalies.



ACTIVITY
Detect anomalies in product sales with ML.Net



THE END


