BINARY CLASSIFICATION

Table of Contents

Analyze sentiment of website comments with binary classification in MLNET ... 2
Create a CoNSOle APPUCALION ... 2
PrePare YOUT GaTA......oooo oo 2

Create classes and define Patins. ..o 3
How the data Was prepared . 4
LOAA the data oo e 5
Split the dataset for model training and teSTNG ..., 6
Build and train the MOl ... e 7
Extract and transform the data. ... 8
Add @ 1€arnNiNG AlgOItNM . ..o e e, 8
Train the MOTEL. ..o oo 9
Return the model trained to use for @valuation ... 9
Evaluate the MOl ... e 10
Displaying the metrics for model validation ... 11
Predict the test data OULCOMIE ... 1
Use the model TOr PrediClionN . ..o e 13
Deploy and prediCt DatCh ITEIMISo 13
Predict cOmmeENnt SENTIMENT..... oo 14
Combine and display the PrediCtioNS. ..., 14

RS U S 15

Analyze sentiment of website comments with binary
classification in ML.NET

https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/sentiment-analysis

This exercise shows you how to create a NET Core console application that classifies
sentiment from website comments and takes the appropriate action. The binary sentiment
classifier uses C# in Visual Studio 2019.

In this exercise, you learn how to:

e (Create a console application

e Prepare data

e Load the data

e Build and train the model

e Evaluate the model

e Use the model to make a prediction
e See theresults

Prerequisites

e Visual Studio 2019 or later with the ".NET Core cross-platform development” workload
installed

e UCI Sentiment Labeled Sentences dataset (ZIP file)

Create a console application

1. Create a NET Core Console Application called "SentimentAnalysis”.

2. Create a directory named Data in your project to save your data set files.

3. Install the Microsoft ML NuGet Package.

a. In Solution Explorer, right-click on your project and select Manage NuGet

Packages. Choose '"nuget.org” as the package source, and then select the
Browse tab. Search for Microsoft. ML, select the package you want, and then
select the Install button. Proceed with the installation by agreeing to the license
terms for the package you choose.

Prepare your data

1. Download UCI Sentiment Labeled Sentences dataset ZIP file, and unzip.
. Copy the yelp_labelled.txt file into the Data directory you created.
3. In Solution Explorer, right-click the yelp_labeled.txt file and select Properties. Change
the value of Copy to Output Directory to Copy if newer.

https://docs.microsoft.com/en-us/dotnet/machine-learning/tutorials/sentiment-analysis
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/sentiment%20labelled%20sentences.zip
https://archive.ics.uci.edu/ml/machine-learning-databases/00331/sentiment%20labelled%20sentences.zip

Create classes and define paths

1. Add the following additional using statements to the top of the Program.cs file:

using System;

using System.Collections.Generic;

using System.IO;

using System.Ling;

using Microsoft.ML;

using Microsoft.ML.Data;

using static Microsoft.ML.DataOperationsCatalog;
using Microsoft.ML.Trainers;

using Microsoft.ML.Transforms.Text;

2. Add the following code to the line right above the Main method, to create a field to
hold the recently downloaded dataset file path:

static readonly string _dataPath = Path.Combine(Environment.CurrentDirectory, "Data",
"yelp labelled.txt");

3. Next, create classes for your input data and predictions. Add a new class to your
project:
a. In Solution Explorer, right-click the project, and then select Add > New Item.
b. In the Add New Item dialog box, select Class and change the Name field to
SentimentData.cs. Then, select the Add button.

4. The SentimentData.cs file opens in the code editor. Add the following using statement
to the top of SentimentData.cs:

using Microsoft.ML.Data;

5. Remove the existing class definition and add the following code, which has two classes
SentimentData and SentimentPrediction, to the SentimentData.cs file:

public class SentimentData

{
[LoadColumn(9)]
public string SentimentText;
[LoadColumn(1), ColumnName("Label")]
public bool Sentiment;
}
public class SentimentPrediction : SentimentData
{

[ColumnName("PredictedLabel™)]

public bool Prediction { get; set; }
public float Probability { get; set; }

public float Score { get; set; }

How the data was prepared

e The input dataset class, SentimentData, has a string for user comments (SentimentText)
and a bool (Sentiment) value of either 1 (positive) or 0 (negative) for sentiment.

o Both fields have LoadColumn attributes attached to them, which describes the data file
order of each field.

e In addition, the Sentiment property has a ColumnName attribute to designate it as the
Label field.

e The following example file doesn't have a header row, and looks like this:

SentimentText Sentiment (Label)

Waitress was a little slow in service, 0
Crust is not good. 0
Wow... Loved this place.

Service was very prompt.

e SentimentPrediction is the prediction class used after model training. It inherits from
SentimentData so that the input SentimentText can be displayed along with the output
prediction. The Prediction boolean is the value that the model predicts when supplied
with new input SentimentText.

e The output class SentimentPrediction contains two other properties calculated by the
model: Score - the raw score calculated by the model, and Probability - the score
calibrated to the likelihood of the text having positive sentiment.

o For this exercise, the most important property is Prediction.

Load the data

Data in ML.NET is represented as an IDataView interface. IDataView is a flexible, efficient way of
describing tabular data (numeric and text). Data can be loaded from a text file or in real time
(for example, SQL database or log files) to an IDataView object.

The MLContext class is a starting point for all MLNET operations. Initializing mlContext creates
a new ML.NET environment that can be shared across the model creation workflow objects. It's
similar, conceptually, to DBContext in Entity Framework.

You prepare the app, and then load data:

1. Replace the Console WriteLine("Hello World!") line in the Main method with the
following code to declare and initialize the mlContext variable:

MLContext mlContext = new MLContext();

2. Add the following as the next line of code in the Main() method:

TrainTestData splitDataView = LoadData(mlContext);

3. Create the LoadData(} method, just after the Main{) method, using the following code:

public static TrainTestData LoadData(MLContext mlContext)
{

}

The LoadData() method executes the following tasks:

e | oads the data.
o Splits the loaded dataset into train and test datasets.
e Returmns the split train and test datasets.

4. Add the following code as the first line of the LoadData() method:

IDataView dataView = mlContext.Data.LoadFromTextFile<SentimentData>(_dataPath,
hasHeader: false);

The LoadFromTextFile() method defines the data schema and reads in the file. It takes in the
data path variables and returns an IDataView.

Split the dataset for model training and testing

When preparing a model, you use part of the dataset to train it and part of the dataset to test
the model's accuracy.

1. To split the loaded data into the needed datasets, add the following code as the next
line in the LoadData() method:

TrainTestData splitDataView = mlContext.Data.TrainTestSplit(dataView,
testFraction: 0.2);

The previous code uses the TrainTestSplit() method to split the loaded dataset into train and
test datasets and return them in the DataOperationsCatalog. TrainTestData class. Specify the
test set percentage of data with the testFractionparameter. The default is 10%, in this case
you use 20% to evaluate more data.

2. Return the splitDataView at the end of the LoadData() method:

return splitDataView;

Build and train the model

1. Add the following call to the BuildAndTrainModelmethod as the next line of code in the
Main() method:

ITransformer model = BuildAndTrainModel(mlContext, splitDataView.TrainSet);

The BuildAndTrainModel() method executes the following tasks:

e Extracts and transforms the data.

e Trains the model.

e Predicts sentiment based on test data.
e Retums the model.

2. Create the BuildAndTrainModel() method, just after the Main{) method, using the
following code:

public static ITransformer BuildAndTrainModel(MLContext mlContext, IDataView
splitTrainSet)

{
}

Extract and transform the data

1. Call FeaturizeText as the next line of code:

var estimator = mlContext.Transforms.Text.FeaturizeText(outputColumnName:
"Features", inputColumnName: nameof(SentimentData.SentimentText));

The FeaturizeText() method in the previous code converts the text column (SentimentText)
into a numeric key type Features column used by the machine learning algorithm and adds
it as a new dataset column:

SentimentText Sentiment Features

Waitress was a little slow in service. 0 [0.76, 0.65, 0.44, ...]
Crust is not good. 0 [0.98, 0.43, 0.54, ...]
Wow... Loved this place, 1 [0.35, 0.73, 0.46, ..]
Service was very prompt. 1 [0.39, 0, 0.75, ..]

Add a learning algorithm

This app uses a classification algorithm that categorizes items or rows of data. The app
categorizes website comments as either positive or negative, so use the binary classification
task.

Append the machine learning task to the data transformation definitions by adding the
following as the next line of code in BuildAndTrainModel():

.Append(mlContext.BinaryClassification.Trainers.SdcalLogisticRegression(labelColumnName
: "Label", featureColumnName: "Features"))

The SdcalogisticRegressionBinaryTrainer is your classification training algorithm. This is
appended to the estimator and accepts the featurized SentimentText (Features) and the Label
input parameters to learn from the historic data.

Train the model

Fit the model to the splitTrainSet data and return the trained model by adding the following as
the next line of code in the BuildAndTrainModel() method:

Console.WriteLine("=============== Create and Train the Model ===============");
var model = estimator.Fit(splitTrainSet);
Console.WritelLine("=============== End of training ===s============");

Console.WriteLine();

The Fit() method trains your model by transforming the dataset and applying the training.

Return the model trained to use for evaluation

Return the model at the end of the BuildAndTrainModel() method:

return model;

Evaluate the model

After your model is trained, use your test data to validate the model's performance.

1. Create the Evaluate() method, just after BuildAndTrainModel(), with the following code:

public static void Evaluate(MLContext mlContext, ITransformer model, IDataView
splitTestSet)

{
¥

The Evaluate() method executes the following tasks:

e Loads the test dataset.

o (Creates the BinaryClassification evaluator.
e Evaluates the model and creates metrics.
e Displays the metrics.

2. Add a call to the new method from the Main() method, right under the
BuildAndTrainModel() method call, using the following code:

Evaluate(mlContext, model, splitDataView.TestSet);

3. Transform the splitTestSet data by adding the following code to Evaluate():

Console.WriteLine("=============== Evaluating Model accuracy with Test

IDataView predictions = model.Transform(splitTestSet);

The previous code uses the Transform() method to make predictions for multiple provided
input rows of a test dataset.

4. Evaluate the model by adding the following as the next line of code in the Evaluate()
method:

CalibratedBinaryClassificationMetrics metrics =
mlContext.BinaryClassification.Evaluate(predictions, "Label");

Once you have the prediction set (predictions), the Evaluate() method assesses the model,
which compares the predicted values with the actual Labels in the test dataset and returns a
CalibratedBinaryClassificationMetrics object on how the model is performing.

Displaying the metrics for model validation

Use the following code to display the metrics:

Console.WriteLine();

Console.WriteLine("Model quality metrics evaluation");
Console.WriteLine("------------ccommmmmmmme oo ");
Console.WriteLine($"Accuracy: {metrics.Accuracy:P2}");
Console.WriteLine($"Auc: {metrics.AreaUnderRocCurve:P2}");
Console.WriteLine($"F1Score: {metrics.F1Score:P2}");
Console.WriteLine("=============== End of model evaluation ===============");

The Accuracy metric gets the accuracy of a model, which is the proportion of correct
predictions in the test set.

The AreaUnderRocCurve metric indicates how confident the model is correctly
classifying the positive and negative classes. You want the ArealUnderRocCurve to be as
close to one as possible.

The F1Score metric gets the model's F1 score, which is a measure of balance between
precision and recall. You want the F1Score to be as close to one as possible.

Predict the test data outcome

1.

Create the UseModelWithSingleltem() method, just after the Evaluate() method, using
the following code:

private static void UseModelWithSingleItem(MLContext mlContext, ITransformer
model)

{
}

The UseModelWithSingleltem() method executes the following tasks:

e Creates a single comment of test data.

e Predicts sentiment based on test data.

e Combines test data and predictions for reporting.
e Displays the predicted results.

Add a call to the new method from the Main() method, right under the Evaluatel()

method call, using the following code:

UseModelWithSingleItem(mlContext, model);

3. Add the following code to create as the first line in the UseModelWithSingleltem()

Method:

PredictionEngine<SentimentData, SentimentPrediction> predictionFunction =
mlContext.Model.CreatePredictionEngine<SentimentData, SentimentPrediction>(model);

The PredictionEngine is a convenience API, which allows you to perform a prediction on a
single instance of data. PredictionEngine is not thread-safe. It's acceptable to use in single-
threaded or prototype environments. For improved performance and thread safety in
production environments, use the PredictionkEnginePool service, which creates an
ObjectPool of PredictionEngine objects for use throughout your application. See this quide
on how to use PredictionEnginePool in an ASP.NET Core Web API.

4. Add a comment to test the trained model's prediction in the UseModelWithSingleltem()
method by creating an instance of SentimentData:

SentimentData sampleStatement = new SentimentData

{
1

SentimentText = "This was a very bad steak”

5. Pass the test comment data to the PredictionEngine by adding the following as the next
lines of code in the UseModelWithSingleltem() method:

var resultPrediction = predictionFunction.Predict(sampleStatement);

The Predict() function makes a prediction on a single row of data.

6. Display SentimentText and corresponding sentiment prediction using the following
code:

Console.WriteLine();
Console.WriteLine("=============== Prediction Test of model with a single sample and
test dataset =============== ');

Console.WriteLine();

Console.WritelLine($"Sentiment: {resultPrediction.SentimentText} | Prediction:
{(Convert.ToBoolean(resultPrediction.Prediction) ? "Positive" : "Negative")} |
Probability: {resultPrediction.Probability} ");

Console.WritelLine("=============== End of Predictions ===============");
Console.WriteLine();

Use the model for prediction

Deploy and predict batch items

1. Create the UseModelWithBatchltems() method, just after the UseModelWithSingleltem()
method, using the following code:

public static void UseModelWithBatchItems(MLContext mlContext, ITransformer model)
{

}

The UseModelWithBatchltems(} method executes the following tasks:

o (Creates batch test data.

e Predicts sentiment based on test data.

o Combines test data and predictions for reporting.
o Displays the predicted results.

2. Add a call to the new method from the Main method, right under the
UseModelWithSingleltem() method call, using the following code:

UseModelWithBatchItems(mlContext, model);

3. Add some comments to test the trained model's predictions in the
UseModelWithBatchltems() method:

IEnumerable<SentimentData> sentiments = new[]

{
new SentimentData
{
SentimentText = "This was a horrible meal”
1>
new SentimentData
{
SentimentText = "I love this spaghetti."
}

Predict comment sentiment

Use the model to predict the comment data sentiment using the Transform() method:

IDataView batchComments = mlContext.Data.LoadFromEnumerable(sentiments);
IDataView predictions = model.Transform(batchComments);

// Use model to predict whether comment data is Positive (1) or Negative (0).
IEnumerable<SentimentPrediction> predictedResults =

mlContext.Data.CreateEnumerable<SentimentPrediction>(predictions, reuseRowObject:
false);

Combine and display the predictions

Create a header for the predictions using the following code:

Console.WriteLine();
Console.WriteLine("=============== Prediction Test of loaded model with multiple
samples ===============") ;

Because SentimentPrediction is inherited from SentimentData, the Transform() method
populated SentimentText with the predicted fields. As the ML.NET process processes, each
component adds columns, and this makes it easy to display the results:

foreach (SentimentPrediction prediction in predictedResults)

{

Console.WritelLine($"Sentiment: {prediction.SentimentText} | Prediction:
{(Convert.ToBoolean(prediction.Prediction) ? "Positive" : "Negative")} | Probability:
{prediction.Probability} ");

}

Console.WriteLine("=============== End of predictions ===============");

Results

Your results should be similar to the following. During processing, messages are displayed. You
may see warnings, or processing messages. These have been removed from the following
results for clarity.

Model quality metrics evaluation
Accuracy: 83.96%
Auc: 90.51%

FlScore: 84.04%

End of model evaluation

Prediction Test of model with a single sample and test

dataset
Sentiment: This was a very bad steak | Prediction: Negative | Probability:
0.1027377

End of Predictions

Prediction Test of loaded model with a multiple samples
Sentiment: This was a horrible meal | Prediction: Negative | Probability:
0.1369192
Sentiment: I love this spaghetti. | Prediction: Positive | Probability:
0.9960636

End of predictions

End of process

Press any key to continue

Congratulations! You've now successfully built a machine learning model for classifying and
predicting messages sentiment.

Building successful models is an iterative process. This model has initial lower quality as the
exercise uses small datasets to provide quick model training. If you aren't satisfied with the
model quality, you can try to improve it by providing larger training datasets or by choosing
different training algorithms with different hyper-parameters for each algorithm.

You can find the source code for this exercise at the dotnet/samples repository.

https://github.com/dotnet/samples/tree/main/machine-learning/tutorials/SentimentAnalysis

