
Performance and Fork-Join Framework 
 

Concurrent Performance 
 

Ensuring good performance in concurrent applications involves understanding and mitigating 
common performance hazards such as deadlocks and livelocks, as well as using various 
techniques for performance evaluation and tuning.  

 

Here's an overview of these concepts and techniques. 

 

Understanding performance hazards (deadlocks, livelocks) 
 

Deadlocks 

 

A deadlock occurs when two or more threads are waiting indefinitely for each other to release 
resources. This situation leads to a complete halt in the program's execution. 

 

Example: 

 

public class DeadlockExample { 

    private final Object lock1 = new Object(); 

    private final Object lock2 = new Object(); 

 

    public void method1() { 

        synchronized (lock1) { 

            System.out.println("Thread 1: Holding lock 1..."); 

            try { Thread.sleep(100); } catch (InterruptedException e) {} 

            synchronized (lock2) { 

                System.out.println("Thread 1: Holding lock 1 & 2..."); 

            } 

        } 

    } 

 

    public void method2() { 

        synchronized (lock2) { 



            System.out.println("Thread 2: Holding lock 2..."); 

            try { Thread.sleep(100); } catch (InterruptedException e) {} 

            synchronized (lock1) { 

                System.out.println("Thread 2: Holding lock 2 & 1..."); 

            } 

        } 

    } 

 

    public static void main(String[] args) { 

        DeadlockExample example = new DeadlockExample(); 

        Thread t1 = new Thread(example::method1); 

        Thread t2 = new Thread(example::method2); 

 

        t1.start(); 

        t2.start(); 

    } 

} 

 

Prevention: 

 Lock Ordering: Ensure that all threads acquire locks in the same order. 
 Lock Timeout: Use tryLock with a timeout to avoid waiting indefinitely. 
 Deadlock Detection: Regularly check for deadlocks in your code. 

 

Livelocks 

 

A livelock occurs when threads keep changing their state in response to each other without 
making any progress. Unlike deadlocks, threads are not blocked but still cannot proceed. 

 

Example: 

 

Two threads repeatedly yielding to each other thinking the other needs to proceed first. 

 

Prevention: 

 Backoff Algorithms: Introduce randomness in retries or pauses to reduce the chance of 
livelock. 

 State Checks: Ensure threads perform work checks before yielding. 

 



Understanding and mitigating performance hazards like deadlocks and livelocks, along with 
effective performance evaluation and tuning techniques, are crucial for building efficient 
concurrent applications. Using tools like profilers, benchmarks, concurrent collections, and 
proper thread pool configuration, you can ensure your Java applications perform optimally 
under concurrent loads.  

  



Techniques for performance evaluation and tuning 
 

1. Profiling 
 
Profiling tools help identify bottlenecks in your application by providing detailed runtime 
information about method calls, memory usage, and thread states. 
 
Tools: 
 

 VisualVM: A powerful profiling tool for monitoring and troubleshooting Java 
applications. 

 JProfiler: A commercial profiler for Java that provides CPU, memory, and thread 
profiling. 

 YourKit: Another popular commercial profiler with extensive features. 
 

2. Benchmarking 
 
Benchmarking involves measuring the performance of code segments under controlled 
conditions to understand their behavior and identify bottlenecks. 
 
Example: 
 
public class BenchmarkExample { 
    public static void main(String[] args) { 
        long startTime = System.nanoTime(); 
        // Code to benchmark 
        long endTime = System.nanoTime(); 
        long duration = endTime - startTime; 
        System.out.println("Duration: " + duration + " 
nanoseconds"); 
    } 
} 
 

  



3. Optimizing Synchronization 
 
Reducing the scope and frequency of synchronization can lead to better performance. 
 

 Reduce Lock Contention: Minimize the duration that locks are held and reduce 
contention by using finer-grained locks or lock-free data structures. 

 Use Concurrent Collections: Use thread-safe collections like 
ConcurrentHashMap and ConcurrentLinkedQueue instead of synchronizing 
around standard collections. 

 
4. Tuning Thread Pools 

 
Proper configuration of thread pools can significantly impact performance. 
 

 Core Pool Size: Set an appropriate core pool size based on the number of 
available processors. 

 Queue Size: Limit the size of the task queue to prevent resource exhaustion. 
 Rejection Policy: Define a rejection policy for tasks when the queue is full. 

 
Example: 
 
import java.util.concurrent.*; 
 
public class ThreadPoolTuningExample { 
    public static void main(String[] args) { 
        ExecutorService executor = new ThreadPoolExecutor( 
            4, 10, 60L, TimeUnit.SECONDS,  
            new ArrayBlockingQueue<>(100),  
            new ThreadPoolExecutor.CallerRunsPolicy() 
        ); 
 
        for (int i = 0; i < 200; i++) { 
            executor.submit(() -> { 
                try { 
                    Thread.sleep(100); 
                    
System.out.println(Thread.currentThread().getName() + " is 
executing task."); 
                } catch (InterruptedException e) { 
                    Thread.currentThread().interrupt(); 
                } 
            }); 
        } 
 
        executor.shutdown(); 
    } 
} 
 



5. Garbage Collection Tuning 
 
Garbage collection (GC) can be a significant performance bottleneck in Java 
applications. Tuning the GC can improve performance. 
 

 GC Algorithms: Choose the appropriate GC algorithm (e.g., G1, ZGC) based on 
your application's requirements. 

 Heap Size: Adjust the heap size to provide enough memory for your application 
without causing excessive GC pauses. 

 

Example (JVM Options): 

 

java -Xms2g -Xmx4g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -
jar yourapp.jar 

 

Understanding and mitigating performance hazards like deadlocks and livelocks, along with 
effective performance evaluation and tuning techniques, are crucial for building efficient 
concurrent applications. Using tools like profilers, benchmarks, concurrent collections, and 
proper thread pool configuration, you can ensure your Java applications perform optimally 
under concurrent loads. 

 

  



Fork-Join Framework 
 

The Fork-Join framework in Java is a powerful tool for parallel programming. Introduced in Java 7 
as part of the java.util.concurrent package, it is designed to take advantage of multiple 
processors by breaking tasks into smaller subtasks and recursively executing them in parallel. 

 

Introduction to Fork-Join Framework 
 

The Fork-Join framework is based on the divide-and-conquer algorithm. It splits a large task into 
smaller tasks (forks) and then combines the results (joins). The framework uses a work-stealing 
algorithm where idle threads can "steal" work from busy threads to maintain optimal CPU 
usage. 

 

Key Components: 

 

 ForkJoinPool: The pool of worker threads that execute ForkJoinTask tasks. 
 ForkJoinTask: A lightweight task that can be executed within a ForkJoinPool. Subclasses 

of ForkJoinTask are RecursiveTask (for tasks that return a result) and RecursiveAction 
(for tasks that do not return a result). 

 

RecursiveTask and RecursiveAction 
 

RecursiveTask 

 

RecursiveTask<V> is used for tasks that return a result. You need to implement the compute 
method, which contains the logic to split the task and combine the results.  

 

Example: 

 

import java.util.concurrent.RecursiveTask; 

import java.util.concurrent.ForkJoinPool; 

 

public class SumTask extends RecursiveTask<Integer> { 

    private static final int THRESHOLD = 10; 

    private final int[] array; 



    private final int start; 

    private final int end; 

 

    public SumTask(int[] array, int start, int end) { 

        this.array = array; 

        this.start = start; 

        this.end = end; 

    } 

 

    @Override 

    protected Integer compute() { 

        if (end - start <= THRESHOLD) { 

            int sum = 0; 

            for (int i = start; i < end; i++) { 

                sum += array[i]; 

            } 

            return sum; 

        } else { 

            int mid = (start + end) / 2; 

            SumTask leftTask = new SumTask(array, start, mid); 

            SumTask rightTask = new SumTask(array, mid, end); 

            leftTask.fork(); 

            int rightResult = rightTask.compute(); 

            int leftResult = leftTask.join(); 

            return leftResult + rightResult; 

        } 

    } 

 

    public static void main(String[] args) { 

        ForkJoinPool pool = new ForkJoinPool(); 

        int[] array = new int[100]; 

        for (int i = 0; i < array.length; i++) { 



            array[i] = i + 1; 

        } 

        SumTask task = new SumTask(array, 0, array.length); 

        int sum = pool.invoke(task); 

        System.out.println("Sum: " + sum); 

    } 

}  

 

RecursiveAction 

 

RecursiveAction is used for tasks that do not return a result. Similar to RecursiveTask, you 
implement the compute method.  

 

Example: 

 

import java.util.concurrent.RecursiveAction; 

import java.util.concurrent.ForkJoinPool; 

 

public class PrintTask extends RecursiveAction { 

    private static final int THRESHOLD = 10; 

    private final int[] array; 

    private final int start; 

    private final int end; 

 

    public PrintTask(int[] array, int start, int end) { 

        this.array = array; 

        this.start = start; 

        this.end = end; 

    } 

 



    @Override 

    protected void compute() { 

        if (end - start <= THRESHOLD) { 

            for (int i = start; i < end; i++) { 

                System.out.println(array[i]); 

            } 

        } else { 

            int mid = (start + end) / 2; 

            PrintTask leftTask = new PrintTask(array, start, mid); 

            PrintTask rightTask = new PrintTask(array, mid, end); 

            invokeAll(leftTask, rightTask); 

        } 

    } 

 

    public static void main(String[] args) { 

        ForkJoinPool pool = new ForkJoinPool(); 

        int[] array = new int[100]; 

        for (int i = 0; i < array.length; i++) { 

            array[i] = i + 1; 

        } 

        PrintTask task = new PrintTask(array, 0, array.length); 

        pool.invoke(task); 

    } 

} 

 

  



In conclusion. 

 

 Fork-Join Framework: A framework for parallel processing that breaks down tasks into 
smaller subtasks and processes them recursively. 

 ForkJoinPool: A pool of worker threads that execute ForkJoinTask tasks. 
 RecursiveTask: A ForkJoinTask that returns a result. 
 RecursiveAction: A ForkJoinTask that does not return a result.  

 

Using the Fork-Join framework can significantly improve performance for tasks that can be 
divided into independent subtasks, especially on multi-core processors. By leveraging the 
parallel processing capabilities of the framework, you can achieve efficient and scalable 
concurrent applications.   



Advanced Fork-Join Techniques 
 

The Fork-Join framework in Java is a powerful tool for parallel computation, and understanding 
its advanced techniques, such as the work-stealing algorithm and optimizing Fork-Join tasks, 
can help you leverage its full potential for performance improvement. 

 

Work-Stealing Algorithm 
 

The work-stealing algorithm is the foundation of the Fork-Join framework. It is designed to 
efficiently utilize available processor cores by dynamically redistributing work among threads to 
avoid idle threads and achieve load balancing. 

 

Key Concepts: 

 

 Work Stealing: When a worker thread finishes its task, it attempts to "steal" work from 
other threads' task queues. 

 Deque (Double-ended Queue): Each worker thread maintains a deque for storing tasks. 
The worker pushes new tasks onto the bottom of the deque and executes them from the 
top. If it runs out of tasks, it tries to steal tasks from the top of another worker's deque. 

 

Benefits: 

 

 Load Balancing: Minimizes idle time by distributing tasks dynamically. 
 Scalability: Adapts to the number of available processors, improving scalability. 
 Efficiency: Reduces contention by having each thread operate on its own deque. 

 

Optimizing Fork-Join Tasks 
 

Optimizing Fork-Join tasks involves writing efficient task code and tuning the framework to 
achieve better performance. 

 

1. Fine-tuning Task Granularity 
 
The size of tasks plays a crucial role in performance. Tasks that are too small can cause 
overhead due to frequent task creation and context switching, while tasks that are too 
large can lead to poor load balancing. 
 



 Optimal Threshold: Determine an optimal threshold for splitting tasks. This 
threshold varies based on the task's complexity and the hardware. 

 
Example: 
 
In the earlier SumTask example, the threshold is set to 10. Adjusting this value based on 
benchmarking can improve performance. 
 

2. Avoid Recursive Overhead 
 
Reduce the overhead of task creation by avoiding excessive recursion. This can be 
achieved by manually processing small batches of work within each task. 
 
Example: 
 
@Override 
protected Integer compute() { 
    if (end - start <= THRESHOLD) { 
        int sum = 0; 
        for (int i = start; i < end; i++) { 
            sum += array[i]; 
        } 
        return sum; 
    } else { 
        int mid = (start + end) / 2; 
        SumTask leftTask = new SumTask(array, start, mid); 
        SumTask rightTask = new SumTask(array, mid, end); 
        leftTask.fork(); 
        return rightTask.compute() + leftTask.join(); 
    } 
} 
 

3. Minimize Synchronization 
 
Reduce synchronization overhead by minimizing shared data access within tasks. Use 
thread-local variables or minimize critical sections to achieve this. 
 

4. Proper Use of ‘invokeAll’ 
 
Use invokeAll to fork multiple tasks efficiently. This method forks all tasks and waits for 
them to complete, ensuring optimal parallel execution. 
 
Example: 
 
@Override 
protected void compute() { 
    if (end - start <= THRESHOLD) { 
        for (int i = start; i < end; i++) { 



            System.out.println(array[i]); 
        } 
    } else { 
        int mid = (start + end) / 2; 
        PrintTask leftTask = new PrintTask(array, start, mid); 
        PrintTask rightTask = new PrintTask(array, mid, end); 
        invokeAll(leftTask, rightTask); 
    } 
} 
 

5. Efficient Merging 
 
When combining results from subtasks, ensure the merge operation is efficient. Avoid 
unnecessary data copying or complex operations in the merge phase. 

 

Advanced Example: Parallel Merge Sort 
 

RecursiveTask Implementation 
 

import java.util.concurrent.RecursiveTask; 

import java.util.concurrent.ForkJoinPool; 

import java.util.Arrays; 

 

public class ParallelMergeSort extends RecursiveTask<int[]> { 

    private static final int THRESHOLD = 100; 

    private final int[] array; 

    private final int start; 

    private final int end; 

 

    public ParallelMergeSort(int[] array, int start, int end) { 

        this.array = array; 

        this.start = start; 

        this.end = end; 

    } 

 

    @Override 

    protected int[] compute() { 

        if (end - start <= THRESHOLD) { 

            int[] result = Arrays.copyOfRange(array, start, end); 



            Arrays.sort(result); 

            return result; 

        } else { 

            int mid = (start + end) / 2; 

            ParallelMergeSort leftTask = new ParallelMergeSort(array, 
start, mid); 

            ParallelMergeSort rightTask = new ParallelMergeSort(array, 
mid, end); 

            invokeAll(leftTask, rightTask); 

            return merge(leftTask.join(), rightTask.join()); 

        } 

    } 

 

    private int[] merge(int[] left, int[] right) { 

        int[] result = new int[left.length + right.length]; 

        int i = 0, j = 0, k = 0; 

        while (i < left.length && j < right.length) { 

            result[k++] = (left[i] < right[j]) ? left[i++] : 
right[j++]; 

        } 

        while (i < left.length) { 

            result[k++] = left[i++]; 

        } 

        while (j < right.length) { 

            result[k++] = right[j++]; 

        } 

        return result; 

    } 

 

    public static void main(String[] args) { 

        ForkJoinPool pool = new ForkJoinPool(); 

        int[] array = {5, 3, 8, 6, 2, 7, 4, 1}; 

        ParallelMergeSort task = new ParallelMergeSort(array, 0, 
array.length); 

        int[] sortedArray = pool.invoke(task); 

        System.out.println(Arrays.toString(sortedArray)); 

    } 

} 



In conclusion. 

 

 Work-Stealing Algorithm: Efficiently balances load among threads, minimizing idle time 
and maximizing CPU utilization. 

 Optimizing Fork-Join Tasks: 
- Fine-tune task granularity to balance task creation overhead and load balancing. 
- Minimize recursive overhead by processing small batches of work within tasks. 
- Reduce synchronization by minimizing shared data access. 
- Use invokeAll for efficient parallel execution of multiple tasks. 
- Ensure efficient merging of results from subtasks. 

 

By understanding and applying these advanced Fork-Join techniques, you can optimize the 
performance of your parallel applications, making full use of modern multi-core processors. 

 

  


