Practices for Lesson 17:
Parallel Streams

Chapter 17

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 1

Practices for Lesson 17: Overview

Practice Overview
In these practices, explore the parallel stream options available in Java.

Old Style Loop

The following example iterates through an Employee list. Each member who is from Colorado
and is an executive has their information printed out. In addition, the sum mutator is used to
calculate the total amount of executive pay for the selected group.

A010IldStyleLoop.java

9 public class A0101dStyleLoop {

10

11 public static void main(Stringl[] args) ({

12

13 List<Employee> eList = Employee.createShortList () ;
14

15 double sum = 0;

16

17 for (Employee e:eList) {

18 if (e.getState() .equals ("CO") &&

19 e.getRole () .equals (Role.EXECUTIVE)) {
20 e.printSummary () ;
21 sum += e.getSalary () ;
22 }
23 }

24

25 System.out.printf ("Total CO Executive Pay: $%,9.2f %n", sum);
26 }

27

28 }

There are a couple of key points that can be made about the above code.
¢ All elements in the collections must be iterated through every time.
e The code is more about "how" information is obtained and less about "what" the code
is trying to accomplish.
e A mutator must be added to the loop to calculate the total.
e There is no easy way to parallelize this code.
The output from the program is as follows.
Output

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00
Total CO Executive Pay: $370,000.00

Lambda Style Loop

The following example shows the new approach to obtaining the same data using lambda
expressions. A stream is created, filtered, and printed. A map method is used to extract the
salary data, which is then summed and returned.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 2

AO02NewsStyleLoop.java

9 public class AO02NewStyleLoop {

10

11 public static void main(String[] args) ({

12

13 List<Employee> elList = Employee.createShortList () ;
14

15 double result = elList.stream()

16 .filter(e -> e.getState() .equals("CO"))

17 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
18 .peek(e -> e.printSummary())

19 .mapToDouble (e -> e.getSalary())

20 .sum() ;

21

22 System.out.printf ("Total CO Executive Pay: $%,9.2f %n",
result) ;

23 }

24

25 }

There are also some key points worth pointing out for this piece of code as well.
e The code reads much more like a problem statement.
e No mutator is needed to get the final result.
e Using this approach provides more opportunity for lazy optimizations.
e This code can easily be parallelized.
The output from the example is as follows.
Output

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00
Total CO Executive Pay: $370,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 3

Streams with Code

So far all the examples have used lambda expressions and stream pipelines to perform the
tasks. In this example, the stream class is used with regular Java statements to perform the

same steps as those found in a pipeline.

A03CodeStream.java
11 public class A03CodeStream
12
13 public static void main(String[] args)
14
15 List<Employee> eList = Employee.createShortList () ;
16
17 Stream<Employee> sl = eList.stream() ;
18
19 Stream<Employee> s2 = sl.filter(
20 e -> e.getState() .equals("CO")) ;
21
22 Stream<Employee> s3 = s2.filter(
23 e -> e.getRole() .equals (Role.EXECUTIVE)) ;
24 Stream<Employee> g4 = s3.peek(e -> e.printSummary()) ;
25 DoubleStream s5 = s4.mapToDouble (e -> e.getSalary());
26 double result = s5.sum() ;
27
28 System.out.printf ("Total CO Executive Pay: $%,9.2f %n",
result) ;
29 }
30
31 }

Even though the approach is possible, a stream pipeline seems like a much better solution.

The output from the program is as follows.
Output

Total CO Executive Pay: $370,000.00

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 4

Making a Stream Parallel

Making a stream run in parallel is pretty easy. Just call the parallelStreamor parallel
method in the stream. With that call, when the stream executes it uses all the processing cores
available to the current JVM to perform the task.

AO4Parallel.java

9 public class AO4Parallel {
10
11 public static void main(Stringl[] args)
12
13 List<Employee> eList = Employee.createShortList () ;
14
15 double result = eList.parallelStream()
16 .filter(e -> e.getState().equals("CO"))
17 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
18 .peek(e -> e.printSummary())
19 .mapToDouble (e -> e.getSalary())
20 .sum() ;
21
22 System.out.printf ("Total CO Executive Pay: $%,9.2f %n",
result) ;
23
24 System.out.println("\n") ;
25
26 // Call parallel from pipeline
27 result = elist.stream()
28 .filter(e -> e.getState() .equals("CO"))
29 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
30 .peek(e -> e.printSummary())
31 .mapToDouble (e -> e.getSalary())
32 .parallel()
33 .sum() ;
34
35 System.out.printf ("Total CO Executive Pay: $%,9.2f %n",
result) ;
36
37 System.out.println("\n") ;
38
39 // Call sequential from pipeline
40 result = eList.stream()
41 .filter(e -> e.getState() .equals("CO"))
42 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
43 .peek(e -> e.printSummary())
44 .mapToDouble (e -> e.getSalary())
45 .sequential ()
46 .sum() ;
47
48 System.out.printf ("Total CO Executive Pay: $%,9.2f %n",
result) ;
49 }
50 }

Remember, the last call wins. So if you call the sequential method after the parallel method in
your pipeline, the pipeline will execute serially.

The following output is produced for this sample program.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 5

Output

Name:
Name :
Name :
Total

Name:
Name:
Name:
Total

Name:
Name:
Name:
Total

Joe Bailey Role:

Betty Jones Role:

Phil Smith Role:

CO Executive Pay:

Joe Bailey Role:
Phil Smith Role:

Betty Jones Role:
CO Executive Pay:

Joe Bailey Role:
Phil Smith Role:

Betty Jones Role:
CO Executive Pay:

EXECUTIVE Dept:
EXECUTIVE Dept:

EXECUTIVE Dept:
$370,000.00

EXECUTIVE Dept:

EXECUTIVE Dept:
EXECUTIVE Dept:
$370,000.00

EXECUTIVE Dept:

EXECUTIVE Dept:
EXECUTIVE Dept:
$370,000.00

Eng St:

Sales
HR St:

Eng St:

HR St:
Sales

Eng St:

HR St:
Sales

CO Salary: $120,000.00
St
CO Salary: $110,000.00

CO Salary: $120,000.00
CO Salary: $110,000.00
St:

CO Salary: $120,000.00
CO Salary: $110,000.00
St:

CO Salary: $140,000.

CO Salary: $140,000.

CO Salary: $140,000.

00

00

00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams

Chapter 17 - Page 6

Stateful Versus Stateless Operations
You should avoid using stateful operations on collections when using stream pipelines. The
collect method and Collectors class have been designed to work with both serial and
parallel pipelines.

AO05AvoidStateful.java

11 public class AO5AvoidStateful {

12

13 public static void main(String[] args)

14

15 List<Employee> elList = Employee.createShortList () ;
16 List<Employee> newList0l = new ArrayList<> () ;

17 List<Employee> newList02 = new ArrayList<> () ;

18

19 eList.parallelStream() // Not Parallel. Bad.

20 .filter(e -> e.getDept () .equals("Eng"))

21 .forEach(e -> newList0l.add(e));

22

23 newList02 = elList.parallelStream() // Good Parallel
24 .filter(e -> e.getDept() .equals("Eng"))

25 .collect (Collectors.toList ()) ;

26

27 }

28 }

Lines 19 to 21 show you how NOT to extract data from a pipeline. Your operations may not be
thread safe. Lines 23 to 25 demonstrate the correct method for saving data from a pipeline
using the collect method and Collectors class.

Deterministic and Non-Deterministic Operations

Most stream pipelines are deterministic. That means that whether the pipeline is processed
serially or in parallel the result will be the same.

AO6Determine.java

10 public class AO6Determine {

11

12 public static void main(String[] args) {

13

14 List<Employee> elList = Employee.createShortList () ;
15

16 double rl = elList.stream()

17 .filter(e -> e.getState().equals("CO"))

18 .mapToDouble (Employee: :getSalary)

19 .sequential () .sum() ;

20

21 double r2 = elist.stream()

22 .filter(e -> e.getState().equals("CO"))

23 .mapToDouble (Employee: :getSalary)

24 .parallel () .sum() ;

25

26 System.out.println("The same: " + (rl == r2));

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 7

27 }
28 }

The example shows that the result for a sum is the same that is processed using either
highlighted method.

The output from the sample is as follows:
Output

The same: true

However, some operations are not deterministic. The £indany () method is a short-circuit
terminal operation that may produce different results when processed in parallel.

A07DetermineNot.java

10 public class AO7DetermineNot {

11

12 public static void main(String[] args) {

13

14 List<Employee> elList = Employee.createShortList () ;
15

16 Optional<Employee> el = elList.stream()

17 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
18 .sequential () . findAny () ;

19

20 Optional<Employee> e2 = elist.stream()

21 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
22 .parallel() .findAny () ;

23

24 System.out.println("The same: " +

25 el.get () .getEmail () .equals(e2.get () .getEmail ())) ;
26

27 }

28 }

The data set used in the example is fairly small therefore the two different approaches will often
produce the same result. However, with a larger data set, it becomes more likely that the results
produced will not be the same.

Reduction

The reduce method performs reduction operations for the stream libraries. The following
example sums numbers 1 to 5.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 8

AO8Reduction.java

9 public class AO8Reduction (

10

11 public static void main(String[] args) {

12

13 int rl = IntStream.rangeClosed(l, 5).parallel()
14 .reduce (0, (a, b) -> a + b);

15

16 System.out.println("Result: " + rl);

17

18 int r2 = IntStream.rangeClosed(l, 5) .parallel()
19 .reduce (0, (sum, element) -> sum + element);
20

21 System.out.println("Result: " + r2);

22

23 }

Two examples are shown. The second example started on line 18 uses more description
variables to show how the two variables are used. The left value is used as an accumulator. The
value on the right is added to the value on the left. Reductions must be associative operations to
get a correct result.

The output from both expressions should be the following:
Output

Result: 15
Result: 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 9

Practice 17-1: Calculate Total Sales without a Pipeline

Overview

In this practice, calculate the sales total for Radio Hut using the Stream class and normal Java
statements.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl7-01Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/ 17-ParallelStreams
/practices/practicel.

e Select salesTxnl7-01Prac and click the Open Project button.

2. Expand the project directories.

3. Editthe calcTest class to perform the steps in this practice.

4. Calculate the total sales for Radio Hut using the Stream class and Java statements.

Create a stream from tList and assign it to: Stream<SalesTxn> sl

Create a second stream and assign the results of the £i1ter method for Radio Hut
transactions: Stream<SalesTxn> s2

Create a third stream and assign the results from a mapToDouble method that returns the
transaction total: DoubleStream s3

Sum the final stream and assign the result to: double t1.

5. Print the results.

Hint: Be mindful of the method return types. Use the API doc to ensure that you are using
the correct methods and classes to create and store results.

6. The output from your test class should be similar to the following:

=== Transactions Totals ===
Radio Hut Total: $3,840,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 10

Practice 17-2: Calculate Sales Totals using Parallel Streams

Overview
In this practice, calculate the sales totals from the collection of sales transactions.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl7-02Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/ 17-ParallelStreams
/practices/practice2.

e Select salesTxnl7-02Prac and click the Open Project button.
2. Expand the project directories.
Edit the CalcTest class to perform the steps in this practice.
4. Calculate the total sales for Radio Hut, PriceCo, and Best Deals.

a. Calculate the Radio Hut total using the parallelStream method. The pipeline should
contain the following methods: parallelStream, filter, mapToDouble, and sum.

w

b. Calculate the PriceCo total using the parallel method. The pipeline should contain
the following methods: filter, mapToDouble, parallel, and sum.

c. Calculate the Best Deals total using the sequential method. The pipeline should
contain the following methods: filter, mapToDouble, sequential, and sum.

5. Print the results.
6. The output from your test class should be similar to the following:

=== Transactions Totals ===
Radio Hut Total: $3,840,000.00
PriceCo Total: $1,460,000.00
Best Deals Total: $1,300,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 11

Practice 17-3: Calculate Sales Totals Using Parallel Streams and
Reduce

Overview

In this practice, calculate the sales totals from the collection of sales transactions using the
reduce method.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl7-03Prac project.
e Select File > Open Project.

e Browse to /home/oracle/labs/ 17-ParallelStreams
/practices/practice3.

e Select salesTxnl7-03Prac and click the Open Project button.

2. Expand the project directories.

Edit the calcTest class to perform the steps in this practice.

4. Calculate the total sales for PriceCo using the reduce method instead of sum.
a. Your pipeline should consist of: filter, mapToDouble, parallel, and reduce.
b. The reduce function can be defined as: reduce (0, (sum, e) -> sum + e)

5. In addition, calculate the total number of transactions for PriceCo using map and reduce.

w

a. Your pipeline should consist of: filter, mapToInt, parallel, and reduce.

b. To count the transactions, use: mapToInt (t -> 1)

c. The reduce function can be defined as: reduce (0, (sum, e) -> sum + e).
6. Print the results.
7. The output from your test class should be similar to the following:

=== Transactions Totals ===

PriceCo Total: $1,460,000.00
PriceCo Transactions: 4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 17: Parallel Streams
Chapter 17 - Page 12

