Practices for Lesson 10:
Lambda Operations

Chapter 10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 1

Practices for Lesson 10: Overview

Practice Overview
In these practices, create lambda expressions and streams to process data in collections.

Employee List
Here is a short list of Employees and their data that will be used for the examples that follow.

Name: Bob Baker Role: STAFF Dept: Eng St: KS Salary: $40,000.00

Name: Jane Doe Role: STAFF Dept: Sales St: KS Salary: $45,000.00

Name: John Doe Role: MANAGER Dept: Eng St: KS Salary: $65,000.00

Name: James Johnson Role: MANAGER Dept: Eng St: MA Salary: $85,000.00
Name: John Adams Role: MANAGER Dept: Sales St: MA Salary: $90,000.00
Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00

Map

The map method in the St ream class allows you to extract a field from a stream and perform
some operation or calculation on that value. The resulting values are then passed to the next
stream in the pipeline.

AO01MapTest.java
9 public class AOlMapTest {
10
11 public static void main(String[] args) {
12
13 List<Employee> eList = Employee.createShortList () ;
14
15 System.out.println("\n== CO Bonuses ==");
16 eList.stream()
17 .filter(e -> e.getRole() .equals (Role.EXECUTIVE))
18 .filter(e -> e.getState() .equals("CO"))
19 .map(e -> e.getSalary() * Bonus.byRole(e.getRole()))
20 .forEach(s -> System.out.printf ("Bonus paid: $%,6.2f %n", s));
21

The example prints out the bonuses for two different groups. The £ilter methods select the
groups and then map is used to compute a result.

Output

== CO Bonuses ==

Bonus paid: $7,200.00
Bonus paid: $6,600.00
Bonus paid: $8,400.00

Peek

The peek method of the Stream class allows you to perform an operation on an element in the
stream. The elements are returned to the stream and are available to the next stream in the
pipeline. The peek method can be used to read or change data in the stream. Any changes will
be made to the underlying collection.

A02MapPeekTest.java

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 2

15
16
17
18
19
20
21
22
23
24

System.out.println("\n== CO Bonuses ==");
elList.stream()
.filter(e -> e.getRole() .equals(Role.EXECUTIVE))
.filter(e -> e.getState() .equals("CO"))
.peek (e -> System.out.print("Name: "
+ e.getGivenName() + " " + e.getSurName()))
.map(e -> e.getSalary() * Bonus.byRole(e.getRole()))
.forEach(s ->
System.out.printf (
" Bonus paid: $%,6.2f %n", s));

In this example, after filtering the data, peek is used to print data from the current stream to the
console. After the map method is called, only the data returned from map is available for output.

Output
== CO Bonuses ==
Name: Joe Bailey Bonus paid: $7,200.00
Name: Phil Smith Bonus paid: $6,600.00
Name: Betty Jones Bonus paid: $8,400.00
Find First

The findFirst method of the Stream class finds the first element in the stream specified by
the filters in the pipeline. The findFirst method is a terminal short-circuit operation. This
means intermediate operations are performed in a lazy manner resulting in more efficient
processing of the data in the stream. A terminal operation ends the processing of a pipeline.

AO3FindFirst.java

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

10 public class A03FindFirst ({

public static void main(String[] args) {

}

List<Employee> elList = Employee.createShortList () ;

System.out.println("\n== First CO Bonus ==");
Optional<Employee> result;

result = elList.stream()
.filter(e -> e.getRole() .equals(Role.EXECUTIVE))
.filter(e -> e.getState() .equals("CO"))
.findFirst () ;

if (result.isPresent()) {
result.get () .print () ;
}

The code filters the pipeline for executives in the state of Colorado. The first element in the
collection that meets this criterion is returned and printed out. Notice that the type of the result
variable is Optional<Employee>. This is a new class that allows you to determine if a value is
present before trying to retrieve a result. This has advantages for concurrent applications.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations

Chapter 10 - Page 3

Output

== First CO Bonus ==

Name: Joe Bailey

Age: 62

Gender: MALE

Role: EXECUTIVE

Dept: Eng

Start date: 1992-01-05
Salary: 120000.0
eMail: joebob.bailey@example.com
Phone: 112-111-1111
Address: 111 1st St
City: Town

State: CO

Code: 11111

Find First Lazy

The following example compares a pipeline, which filters and iterates through an entire
collection to a pipeline with a short-circuit terminal operation (findFirst). The peek method is
used to print out a message associated with each operation.

AO4FindFirstLazy.java

10 public class AO0O4FindFirstLazy {

11

12 public static void main(String[] args) {

13

14 List<Employee> eList = Employee.createShortList () ;
15

16 System.out.println("\n== CO Bonuses ==");

17 elList.stream()

18 .peek (e -> System.out.println("Stream start"))
19 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
20 .peek (e -> System.out.println("Executives"))

21 .filter(e -> e.getState() .equals("CO"))

22 .peek (e -> System.out.println("CO Executives"))
23 .map(e -> e.getSalary() * Bonus.byRole(e.getRole()))
24 .forEach(s -> System.out.printf (

25 " Bonus paid: $%,6.2f %n", s));

26

27 System.out.println("\n== First CO Bonus ==");

28 Employee tempEmp = new Employee.Builder () .build() ;
29 Optional<Employee> result = eList.stream()

30 .peek (e -> System.out.println("Stream start"))
31 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
32 .peek (e -> System.out.println("Executives"))

33 .filter(e -> e.getState().equals("CO"))

34 .peek (e -> System.out.println("CO Executives"))
35 .findFirst();

36

37 if (result.isPresent()){

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 4

38 result.get () .printSummary () ;
39 }

40 }

41 }

The pipeline prints out 17 different options. The second, with a short-circuit operator, prints 8.
This demonstrates how lazy operations can really improve the performance of iteration through
a collection.

Output

== CO Bonuses
Stream start
Stream start
Stream start
Stream start
Stream start
Stream start
Executives
CO Executives
Bonus paid: $7,200.00
Stream start
Executives
CO Executives
Bonus paid: $6,600.00
Stream start
Executives
CO Executives
Bonus paid: $8,400.00

== First CO Bonus ==
Stream start

Stream start

Stream start

Stream start

Stream start

Stream start
Executives

CO Executives

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary:
$120,000.00

anyMatch

The anyMatch method returns a boolean based on the specified Predicate. This is a short-
circuiting terminal operation.

A05AnyMatch.java
10 public class AO5AnyMatch {
ié public static void main(String[] args) {
12 List<Employee> elList = Employee.createShortList () ;
12 System.out.println("\n== First CO Bonus ==");

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 5

17
18
19
20
21
22
23
24
25
26
27
28
29

Optional<Employee> result;

if (eList.stream().anyMatch (
e -> e.getState() .equals("co"))){

result = elList.stream()
.peek (e -> System.out.println("Stream"))
.filter(e -> e.getRole() .equals(Role.EXECUTIVE))
.filter(e -> e.getState() .equals("CO"))
.findFirst () ;

if (result.isPresent()) {result.get () .printSummary () ;}

}

The example shows how the anyMatch method could be used to check for a value before
executing a more detailed query.

Count
The count method returns the number of elements in the current stream. This is a terminal
operation.
A06StreamData.java

15 List<Employee> eList = Employee.createShortList () ;

16

17 System.out.println("\n== Executive Count ==");

18 long execCount =

19 elist.stream()

20 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))

21 .count () ;

22

23 System.out.println ("Exec count: " + execCount) ;

The example returns the number of executives in Colorado and prints the result.

Output

Executive Count ==
Exec count: 3

Max

The max method returns the highest matching value given a Comparator to rank elements.
The max method is a terminal operation.

A06StreamData.java
23 System.out.println("Exec count: " + execCount) ;
24
25 System.out.println("\n== Highest Paid Exec ==");
26 Optional highestExec =
27 elList.stream()
28 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
29 .max (Employee: : sortBySalary) ;
30
31 if (highestExec.isPresent()){

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations

Chapter 10 - Page 6

32 Employee temp = (Employee) highestExec.get();
33 System.out.printf (

34 "Name: " + temp.getGivenName() + " "

35 + temp.getSurName () + " Salary: $%,6.2f %n ",
36 temp.getSalary()) ;

37 }

The example shows max being used with a Comparator that has been written for the class.
The sortBySalary method is called using a method reference. Notice the return type of
Optional. This is not the generic version used in previous examples. Therefore, a cast is
required when the object is retrieved.

Output

== Highest Paid Exec ==
Name: Betty Jones Salary: $140,000.00

Min
The min method returns the lowest matching value given a Comparator to rank elements. The
min method is a terminal operation.

A06StreamData.java
39 System.out.println("\n== Lowest Paid Staff ==");
40 Optional lowestStaff =
41 elist.stream()
42 .filter(e -> e.getRole() .equals (Role.STAFF))
43 .min (Comparator.comparingDouble (e -> e.getSalary())):;
44
45 if (lowestStaff.isPresent()){
46 Employee temp = (Employee) lowestStaff.get():;
47 System.out.printf ("Name: " + temp.getGivenName ()
48 + " " 4+ temp.getSurName () +
49 " Salary: $%,6.2f %n ", temp.getSalary());
50 }

In this example, a different Comparator is used. The comparingDouble static method is
called to make the comparison. Notice that the example uses a lambda expression to specify
the comparison field. If you look at the code closely, a method reference could be substituted
instead: Employee: :getSalary. More discussion on this subject follows in the Comparator
section.

Output

== Lowest Paid Staff ==
Name: Bob Baker Salary: $40,000.00

Sum

The sum method calculates a sum based on the stream passed to it. Notice the mapToDouble
method is called before the stream is passed to sum. If you look at the Stream class, no sum
method is included. Instead, a sum method is included in the primitive version of the Stream
class, IntStream, DoubleStream, and LongStream. The sum method is a terminal
operation.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 7

A07CalcSum.java

26 System.out.println("\n== Total CO Bonus Details ==");

27

28 result = elList.stream()

29 .filter(e -> e.getRole() .equals (Role.EXECUTIVE))

30 .filter(e -> e.getState() .equals("CO"))

31 .peek (e -> System.out.print ("Name: "

32 + e.getGivenName() + " " + e.getSurName() + " "))

33 .mapToDouble(e -> e.getSalary() * Bonus.byRole(e.getRole()))
34 .peek(d -> System.out.printf ("Bonus paid: $%,6.2f %n", d))
35 .sum() ;

36

37 System.out.printf ("Total Bonuses paid: $%,6.2f %n", result);

Looking at the example, can you tell the type of result? If the APl documentation is examined,
the mapToDouble method returns a DoubleStream. The sum method for DoubleStream
returns a double. Therefore, the result variable must be a double.

Output

== Total CO Bonus Details ==

Name: Joe Bailey Bonus paid: $7,200.00
Name: Phil Smith Bonus paid: $6,600.00
Name: Betty Jones Bonus paid: $8,400.00
Total Bonuses paid: $22,200.00

Average

The average method returns the average of a list of values passed from a stream. The avg
method is a terminal operation.

A08CalcAvg.java
28 System.out.println("\n== Average CO Bonus Details ==");
29
30 result = elist.stream()
31 .filter(e -> e.getRole() .equals (Role.EXECUTIVE))
32 .filter(e -> e.getState().equals("CO"))
33 .peek (e -> System.out.print ("Name: " + e.getGivenName ()
34 + " " + e.getSurName() + " "))
35 .mapToDouble (e -> e.getSalary() * Bonus.byRole(e.getRole()))
36 .peek(d -> System.out.printf ("Bonus paid: $%,6.2f %n", d))
37 .average () ;
38
39 if (result.isPresent()) {
40 System.out .printf ("Average Bonuses paid: $%,6.2f %n",
41 result.getAsDouble()) ;
42 }
43 }

Once again, the return type for avg can be inferred from the code shown in this example. Note
the check for isPresent () in the if statement and the call to getAsDouble (). In this case an
OptionalDouble is returned.

Output

== Average CO Bonus Details ==
Name: Joe Bailey Bonus paid: $7,200.00
Name: Phil Smith Bonus paid: $6,600.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 8

Name: Betty Jones Bonus paid: $8,400.00
Average Bonuses paid: $7,400.00

Sorted

The sorted method can be used to sort stream elements based on their natural order. This is an
intermediate operation.

A09SortBonus.java
10 public class A09SortBonus
11 public static void main(Stringl[] args)
12 List<Employee> eList = Employee.createShortList () ;
13
14 System.out.println("\n== CO Bonus Details ==");
15
16 elList.stream()
17 .filter(e -> e.getRole() .equals (Role.EXECUTIVE))
18 .filter(e -> e.getState().equals("CO"))
19 .mapToDouble(e -> e.getSalary() * Bonus.byRole(e.getRole()))
20 .sorted ()
21 .forEach(d -> System.out.printf ("Bonus paid: $%,6.2f %n", d));

In this example, the bonus is computed and those values are used to sort the results. So a list
for double values is sorted and printed out.

Output

== CO Bonus Details ==
Bonus paid: $6,600.00
Bonus paid: $7,200.00
Bonus paid: $8,400.00

Sorted with Comparator

The sorted method can also take a Comparator as a parameter. Combined with the
comparing method, the Comparator class provides a great deal of flexibility when sorting a
stream.

A10SortComparator.java
11 public class AlOSortComparator {
12 public static void main(String[] args)
13 List<Employee> eList = Employee.createShortList () ;
14
15 System.out.println("\n== CO Bonus Details Comparator ==");
16
17 elist.stream()
18 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
19 .filter(e -> e.getState() .equals("CO"))
20 .sorted (Comparator.comparing (Employee: :getSurName))
21 .forEach (Employee: :printSummary) ;

In this example, notice on line 20 that a method reference is passed to the comparing method.
In this case, the stream is sorted by surname. However, clearly the implication is any of the get
methods from the Employee class could be passed to this method. So with one simple
expression, a stream can be sorted by any available field.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 9

Output

== CO Bonus Details Comparator ==

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00

Reversed

The reversed method can be appended to the comparing method thus reversing the sort
order of the elements in the stream. The example and output demonstrate this using surname.

A10SortComparator.java
23 System.out.println("\n== CO Bonus Details Reversed ==");
24
25 eList.stream()
26 .filter(e -> e.getRole() .equals (Role.EXECUTIVE))
27 .filter(e -> e.getState().equals("CO"))
28 .sorted (Comparator.comparing (Employee: :getSurName) .reversed())
29 .forEach (Employee: :printSummary) ;

Output

== CO Bonus Details Reversed ==
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00
Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00

Two Level Sort

In this example, the thenComparing method has been added to the comparing method. This
allows you to do a multilevel sort on the elements in the stream. The thenComparing method
takes a Comparator as a parameter just like the comparing method.

A10SortComparator.java
31 System.out.println("\n== Two Level Sort, Dept then Surname ==");
32
33 elList.stream()
34 .sorted(
35 Comparator.comparing (Employee: :getDept)
36 .thenComparing (Employee: :getSurName))
37 .forEach (Employee: :printSummary) ;

In the example, the stream is sorted by department and then by surname. The output is as
follows.

Output

== Two Level Sort, Dept then Surname ==

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Bob Baker Role: STAFF Dept: Eng St: KS Salary: $40,000.00

Name: John Doe Role: MANAGER Dept: Eng St: KS Salary: $65,000.00

Name: James Johnson Role: MANAGER Dept: Eng St: MA Salary: $85,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: John Adams Role: MANAGER Dept: Sales St: MA Salary: $90,000.00
Name: Jane Doe Role: STAFF Dept: Sales St: KS Salary: $45,000.00

Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 10

Collect

The collect method allows you to save the results of all the filtering, mapping, and sorting
that takes place in a pipeline. Notice how the collect method is called. It takes a
Collectors class as a parameter. The Collectors class provides a number of ways to
return the elements left in a pipeline.

A11Collect.java

12 public class AllCollect {

13

14 public static void main(String[] args)

15

16 List<Employee> eList = Employee.createShortList () ;
17

18 List<Employee> nList = new ArrayList<s>();

19

20 // Collect CO Executives

21 nlList = elList.stream()

22 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
23 .filter(e -> e.getState().equals("CO"))

24 .sorted (Comparator.comparing (Employee: :getSurName))
25 .collect(Collectors.toList());

26

27 System.out.println("\n== CO Bonus Details ==");

28

29 nList.stream()

30 .forEach (Employee: :printSummary) ;

31

32 }

33

34 }

In this example, the Collectors class simply returns a new List, which consists of the
elements selected by the filter methods. In addition to a List, a Set or a Map may be returned
as well. Plus there are a number of other options to save the pipeline results. Below are the
three Employee elements that match the filter criteria in sorted order.

Output

== CO Bonus Details ==

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00

Collectors and Math

The Collectors class includes a number of math methods including averagingbouble and
summingDouble along with other primitive versions.

A12CollectMath.java

12 public class Al2CollectMath {

13

14 public static void main(String[] args) {

15

16 List<Employee> elList = Employee.createShortList () ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 11

17

18 // Collect CO Executives

19 double avgSalary = eList.stream()

20 .filter(e -> e.getRole() .equals(Role.EXECUTIVE))
21 .filter(e -> e.getState() .equals("CO"))

22 .collect(

23 Collectors.averagingDouble (Employee: :getSalary)) ;
24

25 System.out.println("\n== CO Exec Avg Salary ==");

26 System.out.printf ("Average: $%,9.2f %n", avgSalary) ;
27

28 }

29

30 }

In this example, an average salary is computed based on the filters provided. A double
primitive value is returned.

Output

== CO Exec Avg Salary ==
Average: $123,333.33

Collectors and Joining

The joining method of the Collectors class allows you to join together elements returned
from a stream.

A13CollectJoin.java

12 public class Al3CollectJoin {

13

14 public static void main(String[] args) {

15

16 List<Employee> eList = Employee.createShortList () ;
17

18 // Collect CO Executives

19 String deptList = elList.stream()

20 .map (Employee: :getDept)

21 .distinct ()

22 .collect(Collectors.joining(", "));
23

24 System.out.println("\n== Dept List ==");
25 System.out.println("Total: " + deptList);
26

27 }

28

29 }

In this example, the values for department are extracted from the stream using a map. A call is
made to the distinct method, which removes any duplicate values. The resulting values are
joined together using the joining method. The output is shown in the following.

Output

== Dept List ==
Total: Eng, Sales, HR

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 12

Collectors and Grouping

The groupingBy method of the Collectors class allows you to generate a Map based on the
elements contained in a stream.

A14CollectGrouping.java

12 public class Al4CollectGrouping

13

14 public static void main(String[] args)

15

16 List<Employee> eList = Employee.createShortList () ;
17

18 Map<String, List<Employee>> gMap = new HashMap<>() ;
19

20 // Collect CO Executives

21 gMap = elList.stream()

22 .collect(Collectors.groupingBy (Employee: :getDept)) ;
23

24 System.out.println("\n== Employees by Dept ==");
25 gMap. forEach((k,v) -> {

26 System.out.println("\nDept: " + k);

27 v.forEach (Employee: :printSummary) ;

28 1) i

29

30 }

31

32 }

In this example, the groupingBy method is called with a method reference to getDept. This
created a Map with the department names used as key and a list of elements that match that
key become the value for the Map. Notice how the Map is specified on line 18. In addition,
starting on line 25 the code iterates through the resulting Map. The output from the Map is
shown in the following.

Output

== Employees by Dept ==

Dept: Sales

Name: Jane Doe Role: STAFF Dept: Sales St: KS Salary: $45,000.00

Name: John Adams Role: MANAGER Dept: Sales St: MA Salary: $90,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00

Dept: HR
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00

Dept: Eng

Name: Bob Baker Role: STAFF Dept: Eng St: KS Salary: $40,000.00

Name: John Doe Role: MANAGER Dept: Eng St: KS Salary: $65,000.00
Name: James Johnson Role: MANAGER Dept: Eng St: MA Salary: $85,000.00
Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 13

Collectors, Grouping, and Counting
Another version of the groupingBy function takes a Function and Collector as
parameters and returns a Map. This example builds on the last and instead of returning
matching elements, it counts them.

A15CollectCount.java

12 public class Al5CollectCount {

13

14 public static void main(String[] args)

15

16 List<Employee> elList = Employee.createShortList () ;
17

18 Map<String, Long> gMap = new HashMap<>() ;

19

20 // Collect CO Executives

21 gMap = elList.stream()

22 .collect(

23 Collectors.groupingBy (

24 e -> e.getDept(), Collectors.counting()));
25

26 System.out.println("\n== Employees by Dept ==");
27 gMap. forEach((k,v) ->

28 System.out.println("Dept: " + kK + " Count: " + v)
29) i

30

31 }

32

33 }

Note how the method once again creates the Map based on department. But this time,
Collectors.counting is used to return long values to the Map. The output from the Map is
shown in the following.

Output

== Employees by Dept ==
Dept: Sales Count: 3
Dept: HR Count: 1

Dept: Eng Count: 4

Collectors and Partitioning

The partitioningBy method offers an interesting way to create a Map. The method takes a
Predicate as an argument and creates a Map with two Boolean keys. One key is true and
includes all the elements that met the true criteria of the Predicate. The other key, false,
contains all the elements that resulted in false values as determined by the Predicate.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 14

A16CollectPartition.java

12 public class Alé6CollectPartition ({

13

14 public static void main(String[] args) {

15

16 List<Employee> elList = Employee.createShortList () ;
17

18 Map<Boolean, List<Employees>> gMap = new HashMap<>() ;
19

20 // Collect CO Executives

21 gMap = elList.stream()

22 .collect(

23 Collectors.partitioningBy (

24 e -> e.getRole() .equals(Role.EXECUTIVE))) ;
25

26 System.out.println("\n== Employees by Dept ==");
27 gMap. forEach((k,v) -> {

28 System.out.println("\nGroup: " + k);

29 v.forEach (Employee: :printSummary) ;

30 1)

31

32 }

33

34 }

This example creates a Map based on role. All executives will be in the true group, and all
other employees will be in the false group. Here is a printout of the map.

Output

== Employees by Dept ==

Group: false

Name: Bob Baker Role: STAFF Dept: Eng St: KS Salary: $40,000.00

Name: Jane Doe Role: STAFF Dept: Sales St: KS Salary: $45,000.00
Name: John Doe Role: MANAGER Dept: Eng St: KS Salary: $65,000.00
Name: James Johnson Role: MANAGER Dept: Eng St: MA Salary: $85,000.00
Name: John Adams Role: MANAGER Dept: Sales St: MA Salary: $90,000.00

Group: true

Name: Joe Bailey Role: EXECUTIVE Dept: Eng St: CO Salary: $120,000.00
Name: Phil Smith Role: EXECUTIVE Dept: HR St: CO Salary: $110,000.00
Name: Betty Jones Role: EXECUTIVE Dept: Sales St: CO Salary: $140,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 15

Practice 10-1: Using Map and Peek

Overview

In this practice, use lambda expressions and the st ream method along with the map and peek
methods to print a report on all the Widget Pro sales in the state of California (CA).

Assumptions
You have completed the lecture portion of this course.

Tasks
1. Openthe SalesTxnl0-01Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practicel.

e Select SalesTxnl10-01Prac and click Open Project.

2. Review the code for the SalesTxn class. Note that enumerations exist for BuyerClass,
State, and TaxRate.

3. Modify the MapTest class to create a sales tax report.
a. Filter the transactions for the following.
— Transactions from the state of CA: t.getState () .equals (State.CA)

— Transactions for the Widget Pro product:
t.getProduct () .equals ("Widget Pro")

b. Use the map method to calculate the sales tax. The calculation is as follows:
t.getTransactionTotal () * TaxRate.byState (t.getState())

c. Print a report similar to the following:

=== Widget Pro Sales Tax in CA ===
Txn tax: $36,000.00
Txn tax: $180,000.00

Note: To get the comma-separated currency, use something like this:
System.out.printf ("Txn tax: $%,9.2f%n", amt)
4. Copy the main method from the MapTest class to the PeekTest class.

5. Update your code to print more detailed information about the matching transaction using
the peek method. A Consumer is provided for you that adds the following:

= Transaction ID
= Buyer
= Total Transaction amount
= Sales tax amount
6. The output should look similar to the following:

=== Widget Pro Sales Tax in CA ===
Id: 12 Buyer: Acme Electronics Txn amt: $400,000.00 Txn tax:
$36,000.00

Id: 13 Buyer: Radio Hut Txn amt: $2,000,000.00 Txn tax: $180,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 16

Practice 10-2: FindFirst and Lazy Operations

Overview

In this practice, compare a forEach loop to a findFirst short-circuit terminal operation and
see how the two differ in number of operations.

The following Consumer lambda expressions have been written for you to save you from some
typing. The variables are: quantReport, streamStart, stateSearch, and
productSearch.

Assumptions
You have completed the lecture portion of the lesson and the previous practice.

Tasks
1. Open the SalesTxnl10-02Prac project.
e Select File > Open Project.
e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practice2.
e Select salesTxn10-02Prac and click Open Project.
2. Editthe LazyTest class to perform the steps in this practice.

3. Using stream and lambda expressions print out a list of transactions that meet the
following criteria.
a. Create afilter to select all "Widget Pro" sales.
b. Create afilter to select transactions in the state of Colorado (CO).

c. lterate through the matching transactions and print a report similar to the following
using quantReport in the forEach.

=== Widget Pro Quantity in CO ===

Seller: Betty Jones-- Buyer: Radio Hut -- Quantity: 20,000
Seller: Dave Smith-- Buyer: PriceCo -- Quantity: 6,000
Seller: Betty Jones-- Buyer: Best Deals -- Quantity: 20,000

4. Perform the same search as in the previous step. This time use the peek method to display
each step in the process. Put a peek method call in the following places.

a. Add a peek method after the stream () method that uses the streamStart asits

parameter.

b. Add a peek method after the filter for state that uses stateSearch as its
parameter.

c. Add apeek method after the £ilter for product that uses productSearch as its
parameter.

d. Print the final result using forEach as in the previous step.
The output should look similar to the following.

=== Widget Pro Quantity in CO ===
Stream start: Jane Doe ID: 11
Stream start: Jane Doe ID: 12
Stream start: Jane Doe ID: 13
Stream start: John Smith ID: 14
Stream start: Betty Jones ID: 15

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 17

State Search: Betty Jones St: CO

Product Search

Seller: Betty Jones-- Buyer: Radio Hut -- Quantity: 20,000
Stream start: Betty Jones ID: 16

State Search: Betty Jones St: CO

Stream start: Dave Smith ID: 17

State Search: Dave Smith St: CO

Product Search

Seller: Dave Smith-- Buyer: PriceCo -- Quantity: 6,000
Stream start: Dave Smith ID: 18

State Search: Dave Smith St: CO

Stream start: Betty Jones ID: 19

State Search: Betty Jones St: CO

Product Search

Seller: Betty Jones-- Buyer: Best Deals -- Quantity: 20,000
Stream start: John Adams ID: 20

Stream start: John Adams ID: 21

Stream start: Samuel Adams ID: 22

Stream start: Samuel Adams ID: 23

5. Copy the code from the previous step so you can modify it.

Replace the forEach with a findFirst method.

7. Add the following code:

Use an Optional<SalesTxn> hamed ft to store the result.

Write an if statement to check to see if ft.isPresent ().

c. If avalue is returned, call the accept method of quantReport to display the result.
d. Your output should look similar to the following:

o

i

=== Widget Pro Quantity in CO (FindFirst)===

Stream start: Jane Doe ID: 11

Stream start: Jane Doe ID: 12

Stream start: Jane Doe ID: 13

Stream start: John Smith ID: 14

Stream start: Betty Jones ID: 15

State Search: Betty Jones St: CO

Product Search

Seller: Betty Jones-- Buyer: Radio Hut -- Quantity: 20,000

Take a moment to consider the difference between terminal and short-circuit terminal
operations.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 18

Practice 10-3: Analyze Transactions with Stream Methods

Overview

In this practice, count the number of transactions and determine the min and max values in the
collection for transactions involving Radio Hut.

Assumptions
You have completed the lecture portion of this lesson and the last practice.

Tasks
1. Openthe SalesTxnl0-03Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practice3.

e Select SalesTxn10-03Prac and click Open Project.
2. Editthe RadioHutTest class to perform the steps in this practice.
3. Using stream and lambda expressions print out all the transactions involving Radio Hut.
a. Usea filter to select all "Radio Hut" transactions.
b. Use the radioReport variable to print the matching transactions.
c. Your output should look similar to the following:

=== Radio Hut Transactions ===

ID: 13 Seller: Jane Doe-- Buyer: Radio Hut -- State: CA -- Amt:
$2,000,000

ID: 15 Seller: Betty Jones-- Buyer: Radio Hut -- State: CO -- Amt:
$ 800,000

ID: 23 Seller: Samuel Adams-- Buyer: Radio Hut -- State: MA -- Amt:
$1,040,000

4. Use stream, filter, and lambda expressions to calculate and print out the total number
of transactions involving Radio Hut. (Hint: Use the count method.)

5. Use stream and lambda expressions to calculate and print out the largest transaction
based on the total transaction amount involving Radio Hut. Use the max function with a
Comparator, for example:

|.max(Comparator.comparing(SalesTxn::getTransactionTotal))

6. Using stream and lambda expressions calculate and print out the smallest transaction
based on the total transaction amount involving Radio Hut. Use the min method in a
manner similar to the previous method.

Hint: Remember to check the API documentation for the return types for the specified
methods.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 19

7. When complete, your output should look similar to the following.

= Radio Hut Transactions ===

ID: 13 Seller: Jane Doe-- Buyer: Radio Hut -- State: CA -- Amt: $2,000,000
ID: 15 Seller: Betty Jones-- Buyer: Radio Hut -- State: CO -- Amt: $ 800,000
ID: 23 Seller: Samuel Adams-- Buyer: Radio Hut -- State: MA -- Amt: $1,040,000

Total Transactions: 3

=== Radio Hut Largest ===

ID: 13 Seller: Jane Doe-- Buyer: Radio Hut -- State: CA -- Amt: $2,000,000
=== Radio Hut Smallest ===

ID: 15 Seller: Betty Jones-- Buyer: Radio Hut -- State: CO -- Amt: $ 800,000

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 20

Practice 10-4: Perform Calculations with Primitive Streams

Overview

In this practice, calculate the sales totals and average units sold from the collection of sales
transactions.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl0-04Prac project.
e Select File > Open Project.
e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practiced.
e Select SalesTxnl10-04Prac and click Open Project.
2. Editthe calcTest class to perform the steps in this practice.
3. Calculate the total sales for "Radio Hut", "PriceCo", and "Best Deals" and print the results.
= For example, filter Radio Hut with a lambda like this:
t -> t.getBuyerName () .equals ("Radio Hut")
= For example, get the transaction total with:
.mapToDouble(t -> t.getTransactionTotal())

4. Calculate the average number of units sold for the "Widget" and "Widget Pro" products and
print the results.

= For example, the Widget Pro code looks like the following:

.filter(t -> t.getProduct () .equals ("Widget Pro"))
.mapToDouble (t-> t.getUnitCount ())

Hint: Be mindful of the method return types. Use to the API doc to ensure you are using the
correct methods and classes to create and store results.

5. The output from your test class should be similar to the following:

=== Transactions Totals ===
Radio Hut Total: $3,840,000.00
PriceCo Total: $1,460,000.00
Best Deals Total: $1,300,000.00
=== Average Unit Count ===
Widget Pro Avg: 21,143
Widget Avg: 12,400

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 21

Practice 10-5: Sort Transactions with Comparator

Overview

In this practice, sort transactions using the Comparator class, the comparing method, and
the sorted method

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl0-05Prac project.
e Select File > Open Project.
e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practices.
e Select salesTxnl10-05Prac and click Open Project.
2. Editthe sortTest class to perform the steps in this practice.

3. Use streams and lambda expressions to print out all the PriceCo transactions by
transaction total in ascending order.

= The sorted method should look something like this:
.sorted (Comparator.comparing (SalesTxn: :getTransactionTotal))
= Use the transReport variable to print the results.

4. Use the same data from the previous step to print out the PriceCo transactions in
descending order.

5. Print out all the transactions sorted using the following sort keys.
= Buyer name
= Sales person
= Transaction total

6. When complete, the output should look similar to the following:

=== PriceCo Transactions ===

Id: 17 Seller: Dave Smith Buyer: PriceCo Amt: $240,000.00
Id: 20 Seller: John Adams Buyer: PriceCo Amt: $280,000.00
Id: 18 Seller: Dave Smith Buyer: PriceCo Amt: $300,000.00
Id: 21 Seller: John Adams Buyer: PriceCo Amt: $640,000.00

=== PriceCo Transactions Reversed ===

Id: 21 Seller: John Adams Buyer: PriceCo Amt: $640,000.00
Id: 18 Seller: Dave Smith Buyer: PriceCo Amt: $300,000.00
Id: 20 Seller: John Adams Buyer: PriceCo Amt: $280,000.00
Id: 17 Seller: Dave Smith Buyer: PriceCo Amt: $240,000.00

=== Triple Sort Transactions ===

Id: 11 Seller: Jane Doe Buyer: Acme Electronics Amt: $60,000.00
Id: 12 Seller: Jane Doe Buyer: Acme Electronics Amt: $400,000.00
Id: 16 Seller: Betty Jones Buyer: Best Deals Amt: $500,000.00
Id: 19 Seller: Betty Jones Buyer: Best Deals Amt: $800,000.00
Id: 14 Seller: John Smith Buyer: Great Deals Amt: $100,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 22

Id: 22 Seller: Samuel Adams Buyer: Mom and Pops Amt: $60,000.00
Id: 17 Seller: Dave Smith Buyer: PriceCo Amt: $240,000.00

Id: 18 Seller: Dave Smith Buyer: PriceCo Amt: $300,000.00

Id: 20 Seller: John Adams Buyer: PriceCo Amt: $280,000.00

Id: 21 Seller: John Adams Buyer: PriceCo Amt: $640,000.00

Id: 15 Seller: Betty Jones Buyer: Radio Hut Amt: $800,000.00
Id: 13 Seller: Jane Doe Buyer: Radio Hut Amt: $2,000,000.00

Id: 23 Seller: Samuel Adams Buyer: Radio Hut Amt: $1,040,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 23

Practice 10-6: Collect Results with Streams

Overview
In this practice, use the collect method to store the results from a stream in a new list.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks
1. Openthe SalesTxnl0-06Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practices.

e Select salesTxnl10-06Prac and click Open Project.
2. Editthe CollectTest class to perform the steps in this practice.

3. Filter the transaction list to only include transactions greater than $300,000 sorted in
ascending order.

4. Store the results in a new list using the collect method. For example:

.collect (Collectors.toList ())

5. Print out the transactions in the new list. The output should look similar to the following:

=== Transactions over $300k ===

Id: 12 Seller: Jane Doe Buyer: Acme Electronics Amt: $400,000.00
Id: 16 Seller: Betty Jones Buyer: Best Deals Amt: $500,000.00
Id: 21 Seller: John Adams Buyer: PriceCo Amt: $640,000.00

Id: 15 Seller: Betty Jones Buyer: Radio Hut Amt: $800,000.00

Id: 19 Seller: Betty Jones Buyer: Best Deals Amt: $800,000.00
Id: 23 Seller: Samuel Adams Buyer: Radio Hut Amt: $1,040,000.00
Id: 13 Seller: Jane Doe Buyer: Radio Hut Amt: $2,000,000.00

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 24

Practice 10-7: Join Data with Streams

Overview
In this practice, use the joining method to combine data returned from a stream.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks

1. Openthe SalesTxnl0-07Prac project.

Select File > Open Project.

Browse to /home/oracle/labs/10-LambdaOperations
/practices/practice7.

Select SalesTxn10-07Prac and click Open Project.

2. Editthe JoinTest class to perform the steps in this practice.

3. Get allist of unique buyer names in a sorted order. Follow these steps to accomplish the
task:

a.
b.
C.
d.

Use map to get all the buyer names.

Use distinct to remove duplicates.

Use sorted to sort the names.

Use joining to join the names together in the output you see in the following.

4. When complete, your output should look similar to the following:

=== Sorted Buyer's List ===
Buyer list: Acme Electronics, Best Deals, Great Deals, Mom and Pops,
PriceCo, Radio Hut

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations

Chapter 10 - Page 25

Practice 10-8: Group Data with Streams

Overview

In this practice, create a Map of transaction data using the groupingBy method from the
Collectors class.

Assumptions
You have completed the lecture portion of this lesson and the previous practice.

Tasks

1.

Open the SalesTxnl10-08Prac project.
e Select File > Open Project.

e Browseto /home/oracle/labs/10-LambdaOperations
/practices/practices.

e Select salesTxn10-08Prac and click Open Project.
Edit the GroupTest class to perform the steps in this practice.

Populate the Map by using the stream collect method to return the list elements grouped
by buyer name.

a. Use Collectors.groupingBy () to group the results.

b. Use SalesTxn: :getBuyerName to determine what to group by.

Print out the result.

Use the printSummary method of the SalesTxn class to print individual transactions.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations

Chapter 10 - Page 26

6. Your output should look similar to the following:

=== Transactions Grouped by Buyer ===

Buyer: PriceCo

ID: 17 - Seller: Dave Smith - Buyer: PriceCo - Product: Widget Pro - ST: CO - Amt:
240000.0 - Date: 2013-03-20

ID: 18 - Seller: Dave Smith - Buyer: PriceCo - Product: Widget - ST: CO - Amt:
300000.0 - Date: 2013-03-30

ID: 20 - Seller: John Adams - Buyer: PriceCo - Product: Widget - ST: MA - Amt:
280000.0 - Date: 2013-07-14

ID: 21 - Seller: John Adams - Buyer: PriceCo - Product: Widget Pro - ST: MA - Amt:
640000.0 - Date: 2013-10-06

Buyer: Acme Electronics

ID: 11 - Seller: Jane Doe - Buyer: Acme Electronics - Product: Widgets - ST: CA -
Amt: 60000.0 - Date: 2013-01-25

ID: 12 - Seller: Jane Doe - Buyer: Acme Electronics - Product: Widget Pro - ST: CA
- Amt: 400000.0 - Date: 2013-04-05

Buyer: Radio Hut

ID: 13 - Seller: Jane Doe - Buyer: Radio Hut - Product: Widget Pro - ST: CA - Amt:
2000000.0 - Date: 2013-10-03

ID: 15 - Seller: Betty Jones - Buyer: Radio Hut - Product: Widget Pro - ST: CO -
Amt: 800000.0 - Date: 2013-02-04

ID: 23 - Seller: Samuel Adams - Buyer: Radio Hut - Product: Widget Pro - ST: MA -
Amt: 1040000.0 - Date: 2013-12-08

Buyer: Mom and Pops
ID: 22 - Seller: Samuel Adams - Buyer: Mom and Pops - Product: Widget - ST: MA -
Amt: 60000.0 - Date: 2013-10-02

Buyer: Best Deals

ID: 16 - Seller: Betty Jones - Buyer: Best Deals - Product: Widget - ST: CO - Amt:
500000.0 - Date: 2013-03-21

ID: 19 - Seller: Betty Jones - Buyer: Best Deals - Product: Widget Pro - ST: CO -
Amt: 800000.0 - Date: 2013-07-12

Buyer: Great Deals
ID: 14 - Seller: John Smith - Buyer: Great Deals - Product: Widget - ST: CA - Amt:
100000.0 - Date: 2013-10-10

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 10: Lambda Operations
Chapter 10 - Page 27

