Java APl Programming and Secure Coding Concepts

Java does provide strong, flexible support for I/O as it relates to files and networks. Java's
I/O system is cohesive and consistent. In fact, once you understand its fundamentals, the
rest of the I/O system is easy to master.

Streams

Java programs perform /O through streams.

A stream is an abstraction that either produces or consumes information. A stream is linked
to a physical device by the Java I/O system.

All streams behave in the same manner, even if the actual physical devices to which they
are linked differ. Thus, the same I/O classes and methods can be applied to different types
of devices. This means that an input stream can abstract many different kinds of input:
from a disk file, a keyboard, or a network socket.

Likewise, an output stream may refer to the console, a disk file, or a network connection.

Streams are a clean way to deal with input/output without having every part of your code
understand the difference between a keyboard and a network, for example.

Java implements streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams

Java defines two types of streams: byte and character.

Byte streams provide a convenient means for handling input and output of bytes. Byte
streams are used, for example, when reading or writing binary data.

Character streams provide a convenient means for handling input and output of
characters. They use Unicode and, therefore, can be internationalized. Also, in some cases,
character streams are more efficient than byte streams.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream. Each of these abstract classes has several concrete
subclasses that handle the differences among various devices, such as disk files, network
connections, and even memory buffers.

Stream Class Meaning
BufferedInputStream Buffered input stream
BufferedOutputStream Buffered output stream

ByteArraylnputStream

Input stream that reads from a byte array

ByteArrayOutputStream

Output stream that writes to a byte array

DatalnputStream

An input stream that contains methods for reading the Java
standard data types

DataOutputStream

An output stream that contains methods for writing the Java
standard data types

FileInputStream

Input stream that reads from a file

FileOutputStream

Output stream that writes to a file

FilterInputStream

Implements InputStream

FilterOutputStream

Implements OutputStream

InputStream

Abstract class that describes stream input

ObjectInputStream

Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output
PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream

Output stream that contains print() and println()

PushbackInputStream

Input stream that supports one-byte “unget,” which returns a
byte to the input stream

ScequencelnputStream

Input strcam that is a combination of two or more input
streams that will be read sequentially, one after the other

Table 13-1 The Byte Stream Classes in java.io

The abstract classes InputStream and OutputStream define several key methods that the
other stream classes implement. Two of the most important are read() and write(), which,
respectively, read and write bytes of data. Each has a form that is abstract and must be
overridden by derived stream classes.

The Character Stream Classes

Character streams are defined by using two class hierarchies. At the top are two abstract
classes: Reader and Writer. These abstract classes handle Unicode character streams. Java
has several concrete subclasses of each of these.

Stream Class Meaning

BufferedReader Buffered input character sream
BufferedWriter Buffered output character stream
CharArrayReader Input stream that reads from a character array
CharArrayWriter Output stream that writes to a character array
FileReader Input stream that reads from a file

FileWriter Qutput stream that writes to a file
FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader

[nput stream that translates bytes to characters

LineNumberReader

Input stream that counts lines

OutputStreamWriter

Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input
stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

Table 13-2 The Character Stream |/0 Classes in java.io

The abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read() and write(), which read
and write characters of data, respectively. Each has a form that is abstract and must be
overridden by derived stream classes.

Reading Console Input

In Java, console input is accomplished by reading from System.in. To obtain a character-
based stream that is attached to the console, wrap System.in in a BufferedReader object.
BufferedReader supports a buffered input stream. A commonly used constructor is shown
here:

BufferedReader (Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is
being created. Reader is an abstract class. One of its concrete subclasses is
InputStreamReader, which converts bytes to characters. To obtain an InputStreamReader
object that is linked to System.in, use the following constructor:

InputStreamReader (InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.

Putting it all together, the following line of code creates a BufferedReader that is
connected to the keyboard:

BufferedReader br = new BufferedReader (new
InputStreamReader (System.in)) ;

After this statement executes, br is a character-based stream that is linked to the console
through System.in.

Reading Characters

To read a character from a BufferedReader, use read(). The version of read() that we will
be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it as
an integer value. It returns =1 when the end of the stream is encountered. As you can see,
it can throw an IOException.

The following program demonstrates read() by reading characters from the console until
the user types a "q.” Notice that any I/O exceptions that might be generated are simply
thrown out of main(). Such an approach is common when reading from the console in
simple example programs such as those shown in this book, but in more sophisticated
applications, you can handle the exceptions explicitly.

package com.example.io;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

//Use a BufferedReader to read characters from the console.
public class BRRead {

public static void main(String[] args) throws IOException {
char c;
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");
// read characters

do {
c = (char) br.read();
System.out.println(c);
} while (c != 'q');

Reading Strings

To read a string from the keyboard, use the version of readlLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readline() throws IOException
As you can see, it returns a String object.

The following program demonstrates BufferedReader and the readlLine() method:; the
program reads and displays lines of text until you enter the word "stop”:

package com.example.io;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

//Read a string from console using a BufferedReader.
public class BRReadlLines {

public static void main(String[] args) throws IOException {
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
String str;
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);
} while (!str.equals("stop"));

The next example creates a tiny text editor. It creates an array of String objects and then
reads in lines of text, storing each line in the array. It will read up to 100 lines or until you
enter "stop.” It uses a BufferedReader to read from the console.

package com.example.io;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
//A tiny editor.

public class TinyEdit {

public static void main(String[] args) throws IOException {
// create a BufferedReader using System.in

BufferedReader br = new BufferedReader(new
InputStreamReader(System.in));
String str[] = new String[100];

System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");

for (int 1 = 0; i < 100; i++) {
str[i] = br.readLine();
if (str[i].equals("stop"))
break;

}

System.out.println("\nHere is your file:");

// display the lines
for (int 1 = 0; i < 100; i++) {
if (str[i].equals("stop"))
break;
System.out.println(str[i]);

Writing Console Output

Console output is most easily accomplished with print() and println(), described earlier,
which are used in most of the examples in this book. These methods are defined by the
class PrintStream (which is the type of object referenced by System.out). Even though
System.out is a byte stream, using it for simple program output is still acceptable. However,
a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also implements
the low-level method write(). Thus, write() can be used to write to the console. The
simplest form of write() defined by PrintStream is shown here:

void write (int byteval)

This method writes the byte specified by byteval. Although byteval is declared as an integer,
only the low-order eight bits are written. Here is a short example that uses write() to output
the character "A" followed by a newline to the screen:

package com.example.io;
//Demonstrate System.out.write().
public class WriteDemo {

public static void main(String[] args) {
int b;
b="A";
System.out.write(b);
System.out.write('\n');

You will not often use write() to perform console output (although doing so might be
useful in some situations) because print() and println() are substantially easier to use.

The PrintWriter Class

Although using System.out to write to the console is acceptable, its use is probably best for
debugging purposes or for sample programs, such as those found in this book.

For real-world programs, the recommended method of writing to the console when using
Java is through a PrintWriter stream. PrintWriter is one of the character-based classes.
Using a character-based class for console output makes internationalizing your program
easier.

PrintWriter defines several constructors. The one we will use is shown here:
PrintWriter (OutputStream outputStream, boolean flushingOn)

Here, outputStream is an object of type OutputStream, and flushingOn controls whether
Java flushes the output stream every time a println() method (among others) is called. If
flushingOn is true, flushing automatically takes place. If false, flushing is not automatic.

The following application illustrates using a PrintWriter to handle console output:

package com.example.io;

import java.io.PrintWriter;
//Demonstrate PrintWriter
public class PrintWriterDemo {

public static void main(String[] args) {
PrintWriter pw = new PrintWriter(System.out, true);

pw.println("This is a string");
int 1 = -7;

pw.println(i);

double d = 4.5e-7;
pw.println(d);

Reading and Writing Files

The following program uses read() to input and display the contents of a file that contains
ASCII text. The name of the file is specified as a command-line argument.

package com.example.io;

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

/* Display a text file.

To use this program, specify the name

of the file that you want to see.

For example, to see a file called TEST.TXT,
use the following command line.

java ShowFile TEST.TXT
*/

public class ShowFile {

public static void main(String[] args) {
int i;
FileInputStream fin = null;

// First, confirm that a filename has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile filename");
return;

}

// The following code opens a file, reads characters until EOF
// is encountered, and then closes the file via a finally block.

try {
fin = new FileInputStream(args[0]);
do {
i = fin.read();
if (i !'= -1)
System.out.print((char) i);
} while (i !'= -1);

} catch (FileNotFoundException e) {
System.out.println("File Not Found.");
} catch (IOException e) {
System.out.println("An I/0 Error Occurred");
} finally {
// Close file in all cases.
try {
if (fin != null)
fin.close();
} catch (IOException e) {
System.out.println("Error Closing File");

}

Automatically Closing a File

Automatic resource management is based on an expanded form of the try statement. Here
is its general form:

try (resource-specification) {
/] use the resource
}

Here, resource-specification is a statement that declares and initializes a resource, such as
a file stream. It consists of a variable declaration in which the variable is initialized with a
reference to the object being managed. When the try block ends, the resource is
automatically released.

In the case of a file, this means that the file is automatically closed. (Thus, there is no need
to call close() explicitly.) Of course, this form of try can also include catch and finally
clauses. This new form of try is called the try-with-resources statement.

The try-with-resources statement can be used only with those resources that implement
the AutoCloseable interface defined by java.lang. This interface defines the close() method.
AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces are
implemented by the stream classes. Thus, try-with-resources can be used when working
with streams, including file streams.

package com.example.io;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

/* A version of CopyFile that uses try-with-resources.
It demonstrates two resources (in this case files) being
managed by a single try statement.

*/

public class CopyFile {

public static void main(String[] args) {
int i;

// First, confirm that both files have been specified.
if (args.length != 2) {
System.out.println("Usage: CopyFile from to");
return;

}

// Open and manage two files via the try statement.
try (FileInputStream fin = new FileInputStream(args[0]);

FileOutputStream fout = new FileOutputStream(args[1]))

{
do {
i = fin.read();
if (i !'= -1)
fout.write(i);
} while (i != -1);
} catch (IOException e) {
System.out.println("I/0 Error: " + e);
}
}
}

The NIO Classes

Beginning with version 1.4, Java has provided a second I/O system called NIO (which is
short for New 1/O). It supports a buffer-oriented, channel-based approach to I/O perations.

With the release of JDK 7, the NIO system was greatly expanded, providing enhanced
support for file-handling and file system features. In fact, so significant were the changes
that the term NIO.2 is often used. Because of the capabilities supported by the NIO file
classes, NIO is expected to become an increasingly important approach to file handling.

The NIO classes are contained in the packages shown here:

Package Purpose

java.nio Top-level package for the NIO system. Encapsulates various types
of buffers that contain data operated upon by the NIO system.

java.nio.channels Supports channels, which are essentially open I/O connections.

Jjavanio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets. Also supports encoders and decoders
that convert characters to bytes and bytes to characters, respectively.

Jjava.nio.charset.spi Supports service providers for character sets.

java.nio.file Provides support for files.

java.nio.file.attribute Provides support for file attributes.

java.nio file.spi Supports service providers for file systems.

NIO Fundamentals

The NIO system is built on two foundational items: buffers and channels.
A buffer holds data.
A channel represents an open connection to an I/O device, such as a file or a socket.

In general, to use the NIO system, you obtain a channel to an I/O device and a buffer to
hold data. You then operate on the buffer, inputting or outputting data as needed.

Buffers

Buffers are defined in the java.nio package. All buffers are subclasses of the Buffer class,
which defines the core functionality common to all buffers: current position, limit, and
capacity.

The current position is the index within the buffer at which the next read or write operation
will take place. The current position is advanced by most read or write operations.

The limit is the index value one past the last valid location in the buffer.
The capacity is the number of elements that the buffer can hold.

Often the limit equals the capacity of the buffer. Buffer also supports mark and reset.

Method Description

abstract Object array() If the invoking buffer is backed by an array, returns a reference
to the array. Otherwise, an UnsupportedOperationException is
thrown. If the array is read-only, a ReadOnlyBufferException

is thrown.

abstract int arrayOffset() If the invoking buffer is backed by an array, returns

the index of the first element. Otherwise, an
UnsupportedOperationException is thrown. If the array
is read-only, a ReadOnlyBufferException is thrown.

final int capacity() Returns the number of elements that the invoking buffer is
capable of holding.

final Buffer clear() Clears the invoking buffer and returns a reference to the buffer.

final Buffer flip() Sets the invoking buffer’s limit to the current position and resets

the current position to 0. Returns a reference to the buffer.

abstract boolean hasArray() Returns true if the invoking buffer is backed by a read /write
array and False otherwise.

final boolean hasRemaining() Returns true if there are elements remaining in the invoking
buffer. Returns false otherwise.

Table 21-1 The Methods Defined by Buffer

Method

Description

abstract boolean isDirect()

Returns true if the invoking buffer is direct, which means [/O
operations act directly upon it. Returns false otherwise.

abstract boolean isReadOnly()

Returns true if the invoking buffer is read-only. Returns false
otherwise.

final int limit()

Returns the invoking buffer’s limit.

final Buffer limit (int n)

Sets the invoking buffer’s limit to n. Returns a reference to

the buffer.

final Buffer mark()

Sets the mark and returns a reference to the invoking buffer.

final int position()

Returns the current position.

final Buffer position (int n)

Sets the invoking buffer’s current position to n. Returns a
reference to the buffer.

int remaining()

Returns the number of elements available before the limit is
reached. In other words, it returns the limit minus the current
position.

final Buffer reset()

Resets the current position of the invoking buffer to the
previously set mark. Returns a reference to the buffer.

final Buffer rewind()

Sets the position of the invoking buffer to 0. Returns a
reference to the buffer.

Table 21-1 The Methods Defined by Buffer (continued)

Channels

Channels are defined in java.nio.channels. A channel represents an open connection to an

I/O source or destination. Channels implement the Channel interface. It extends Closeable,
and it extends AutoCloseable. By implementing AutoCloseable, channels can be managed

with a try-with-resources statement. When used in a try-with-resources block, a channel is

closed automatically when itis no longer needed.

Method

Description

abstract byte get()

Returns the byte at the current position.

ByteBuffer get(byte vals[1)

Copies the invoking buffer into the array referred to
by vals. Returns a reference to the buffer. If there are
not vals.length elements remaining in the buffer, a
BufferUnderflowException is thrown.

ByteBuffer get(byte vals[],

int start, int nwum)

Copies num elements from the invoking buffer into
the array referred to by vals, beginning at the index
specified by start. Returns a reference to the buffer. If
there are not num elements remaining in the buffer, a
BufferUnderflowException is thrown.

abstract byte get(int idx)

Returns the byte at the index specified by idx within the
invoking buffer.

abstract ByteBuffer put(byte 5)

Copies binto the invoking buffer at the current position.
Returns a reference to the buffer. If the buffer is full, a

BufferOverflowException is thrown.

final ByteBuffer put(byte vals[])

Copies all elements of vals into the invoking buffer,
beginning at the current position. Returns a reference to
the buffer. If the buffer cannot hold all of the elements, a
BufferOverflowException is thrown.

ByteBuffer put(byte vals[|,

int start, int num)

Copies num elements from vals, beginning at start,
into the invoking buffer. Returns a reference to the
buffer. If the buffer cannot hold all of the elements, a
BufferOverflowException is thrown.

ByteBuffer put(ByteBuffer bb)

Copies the elements in bb to the invoking buffer,
beginning at the current position. If the buffer cannot
hold all of the elements, a BufferOverflowException is
thrown. Returns a reference to the buffer.

abstract ByteBuffer put(int idx, byte b)

Copies b into the invoking buffer at the location specified
by idx. Returns a reference to the buffer.

Table 21-2 The get() and put() Methods Defined for ByteBuffer

One way to obtain a channel is by calling getChannel() on an object that supports
channels. For example, getChannel() is supported by the following I/O classes:

DatagramSocket FilelnputStream FileOutputStream

RandomAccessFile ServerSocket Socket

Enhancements Added to NIO by JDK 7

Beginning with JDK 7, the NIO system was substantially expanded and enhanced. In
addition to support for the try-with-resources statement (which provides automatic
resource management), the improvements included three new packages (java.nio.file,
java.nio file.attribute, and java.nio.file.spi); several new classes, interfaces, and methods; and
direct support for stream-based I/O. The additions have greatly expanded the ways in
which NIO can be used, especially with files.

The Path Interface

Perhaps the single most important addition to the NIO system is the Path interface because
it encapsulates a path to a file. As you will see, Path is the glue that binds together many of

the NIO.2 file-based features. It describes a file's location within the directory structure.

Path is packaged in java.nio.file, and it inherits the following interfaces: Watchable,
lterable<Path>, and Comparable<Path>. Watchable describes an object that can be

monitored for changes.

Method

Description

boolean endsWith (String path)

Returns true if the invoking Path ends with the path specified
by path. Otherwise, returns false.

boolean endsWith(Path path)

Returns true if the invoking Path ends with the path specified
by path. Otherwise, returns false.

Path getFileName()

Returns the filename associated with the invoking Path.

Path getName (int idx)

Returns a Path object that contains the name of the path
element specified by idx within rthe invoking object. The
leftmost element is at index (. This is the element nearest the
root. The rightmost element is at getNameCount() — 1.

int getNameCount()

Returns the number of elements beyond the root directory in

the invoking Path.

Path getParent()

Returns a Path that contains the entire path except for the
name of the file specified by the invoking Path.

Path getRoot()

Rerurns the root of the invoking Path.

Table 21-3 A Sampling of Methods S

pecified by Path

Method

Description

boolean isAbsolute()

Returns true il the invoking Path is absolute. Otherwise,
returns false.

Path resolve (Path path)

If path is absolute, path is returned. Otherwise, if path does
not contain a root, path is prefixed by the root specified by
the invoking Path and the result is returned. If path is empty,
the invoking Path is returned. Otherwise, the behavior is
unspecified.

Path resolve(String path)

If path is absolute, path is returned. Otherwise, if path does
not contain a root, path is prefixed by the root specified by
the invoking Path and the result is returned. If path is empty,
the invoking Path is returned. Otherwise, the behavior is
unspecified.

boolean startsWith (String path)

Returns true if the invoking Path starts with the path specified
by path. Otherwise, returns false.

boolean startsWith (Path path)

Returns true if the invoking Path starts with the path specified
by path. Otherwise, returns false.

Path toAbsolutePath()

Returns the invoking Path as an absolute path.

String toString()

Returns a string representation of the invoking Path.

Table 21-3 A Sampling of Methods Specified by Path (continued)

The Files Class

Many of the actions that you perform on a file are provided by static methods within the
Files class. The file to be acted upon is specified by its Path. Thus, the Files methods use a
Path to specify the file that is being operated upon. Files contains a wide array of
functionality.

For example, it has methods that let you open or create a file that has the specified path.
You can obtain information about a Path, such as whether it is executable, hidden, or read-
only. Files also supplies methods that let you copy or move files.

JDK 8 adds these four methods to Files: list(), walk(), lines(), and find(). All return a Stream
object.

The Paths Class

Because Path is an interface, not a class, you can't create an instance of Path directly
through the use of a constructor. Instead, you obtain a Path by a calling a method that
returns one. Frequently, you do this by using the get() method defined by the Paths class.

There are two forms of get(). The one used in this chapter is shown here:
static Path get (String pathname, String ... parts)
It returns a Path that encapsulates the specified path.

The path can be specified in two ways. First, if parts is not used, then the path must be
specified in its entirety by pathname.

Alternatively, you can pass the path in pieces, with the first part passed in pathname and
the subsequent elements specified by the parts varargs parameter. In either case, if the
path specified is syntactically invalid, get() will throw an InvalidPathException.

The second form of get() creates a Path from a URI. It is shown here:
static Path get (URI uri)
The Path corresponding to uri is returned.

Itis important to understand that creating a Path to a file does not open or create a file. It
simply creates an object that encapsulates the file's directory path.

The File Attribute Interfaces

Associated with a file is a set of attributes. These attributes include such things as the file's
time of creation, the time of its last modification, whether the file is a directory, and its size.
NIO organizes file attributes into several different interfaces. Attributes are represented by a
hierarchy of interfaces defined in java.nio file.attribute. At the top is BasicFileAttributes. It
encapsulates the set of attributes that are commonly found in a variety of file systems.

Method Description

FileTime creationTime() Retrns the time at which the file was created. If creation time is not
provided by the file system, then an implementation-dependent value is
returned.

Object fileKey() Returns the file key. If not supported, null is returned.

boolean isDirectory() Returns true if the file represents a directory.

hoolean isOther() Returns true if the file is not a file, symbolic link, or a directory.

boolean isRegularFile() Returns true if the file is a normal file, rather than a directory or
symbolic link.

boolean isSymbolicLink() Returns true if the file is a symbolic link.

FileTime lastAccessTime() Returns the time at which the file was last accessed. If the time of last

access is not provided by the file system, then an implementation-
dependent value is returned.

FileTime lastModifiedTime() Returns the time at which the file was last modified. If the time of last
modification 1s not provided by the file system, then an implementation-
dependent value is returned.

long size() Returns the size of the file.

Table 21-6 The Methods Defined by BasicFileAttributes

The FileSystem , FileSystems, and FileStore Classes

You can easily access the file system through the FileSystem and FileSystems classes
packaged in java.nio file. In fact, by using the newfFileSystem() method defined by
FileSystems, it is even possible to obtain a new file system. The FileStore class encapsulates
the file storage system. Although these classes are not used directly in this chapter, you
may find them helpful in your own applications.

Secure Coding

Refer to page Secure Coding Guidelines for Java SE (oracle.com)

Localization

Why Localize?

The decision to create a version of an application for international use often happens at the
start of a development project.

e Region- and language-aware software.
e Dates, numbers, and currencies formatted for specific countries.
e Ability to plug in country-specific data without changing code.

Localization is the process of adapting software for specific region or language by adding
locale-specific components and translating text.

The goal is to design for localization so that no coding changes are required.

A Sample Application

Localize a sample application.

e Text-based user interface.
e Localize menus.
e Display currency and date localizations.

== Localization App ===
Set to English

Set to French

Set to Chinese

Set to Russian

Show me the date

Show me the money!

QG o ;o W

Enter g to quit

Enter a command:

Locale

In Java, a locale is specified by using two values: language and country.

e language
o Analpha-2 or alpha-3 ISO 639 code
o ‘en”for English, “es” for Spanish
o Always uses lowercase
e Country
o Uses the ISO 3166 alpha-2 country code or UN M.49 numeric area code
o "US"for United States, "ES" for Spain
o Always uses uppercase

Reference on localization Creating a Locale (The Java™ Tutorials > Internationalization >
Setting the Locale) (oracle.com)

Properties

e The java.util.Properties class is used to load and save key-value pairs in Java.
e Can be stored in a simple text file.

e File name ends in .properties

e File can be anywhere that compiler can find it.

hostName = www.example.com

ucerName - uger

password = pass

The benefit of a properties file is the ability to set values for your application externally. The
properties file is typically read at the start of the application and is used for default values.
But the properties file can also be an integral part of a localization scheme, where you
store the values of menu labels and text for various languages that your application may
support.

The convention for a properties file is <filename>.properties, but the file can have any
extension you want. The file can be located anywhere that the application can find it.

Loading and Using a Properties File

il public static void main(String[] args) {

2 Properties myProps - new Properties|();

3 EEy il

4 FileInputStream fis = new FileInputStream("ServerInfo.properties") ;
5 myProps.load(£fis) ;

6 } catch (IOException e) {

7 System.out.println("Error: " + e.getMessage());

8 }

9

10 // Print Values

11 System.out.println("Server: " + myPrope.getProperty("hostName")) ;
1z System.out.println("User: " + myProps.getProperty ("userName")) ;

13 System.out .println("Password: " + myProps.getProperty("password")) ;
14 |}

In the code fragment, you create a Properties object. Then, using a try statement, you
open a file relative to the source files in your NetBeans project. When it is loaded, the
name-value pairs are available for use in your application.

Properties files enable you to easily inject configuration information or other application
data into the application.

Loading Properties from the Command Line

e Property information can also be passed on the command line.
e Use the —D option to pass key-value pairs:

java -Dpropertyname=value -Dpropertyname=value myApp

e For example, pass one of the previous values:

java =Dusername=user myApp

e (Get the Properties data from the System object:

String userName = System.getProperty("username") ;

Property information can also be passed on the command line. The advantage to passing
properties from the command line is simplicity. You do not have to open a file and read
from it. However, if you have more than a few parameters, a properties file is preferable.

Resource Bundle

Design for localization begins by designing the application so that all the text, sounds, and
images can be replaced at run time with the appropriate elements for the region and
culture desired. Resource bundles contain key-value pairs that can be hard-coded within a
class or located in a .properties file.

e The ResourceBundle class isolates locale-specific data:
o Returns key/value pairs stored separately.
o Can be aclass or a .properties file.
o Steps to use:
o Create bundle files for each locale.
o Call a specific locale from your application.

Resource Bundle File

e Properties file contains a set of key-value pairs.
o Each key identifies a specific application component.
o Special file names use language and country codes.
e Default for sample application.
o Menu converted into resource bundle.

MessageBundle.properties

menul = Set to English

menuz2 = Set to French
menul = Set to Chinese
menud = Set to Russian

menu5 = Show the Date
menue = Show me the money!

menug = Enter g to guit

The diagram shows a sample resource bundle file for this application. Each menu option
has been converted into a name/value pair. This is the default file for the application. For
alternative languages, a special naming convention is used:

MessageBundle xx YY.properties

where xx is the language code and YY is the country code.

Samples for French and Chinese.

MessagesBundle fr FR.properties

menul = Régler a 1l'anglais
menu2 = Régler au francais
menu3 = Réglez chinoise

menu4 = Définir pour la Russie
menu5 = Afficher la date
menu6é = Montrez-moi 1'argent!

menug = Saisissez g pour quitter

MessagesBundle zh CN.properties
menul = WENIE

menuz = &Eﬁﬂﬁt‘h’%

menu3 = WENFL

menud4 = BEFET W

menus = ‘s HH

menué = S FelER!

menug = HAqiEH

The diagram shows the resource bundle files for French and Chinese. Note that the file
names include both language and country. The English menu item text has been replaced
with French and Chinese alternatives.

Initializing the Sample Application

PrintWriter pw = new PrintWriter(System.out, true);

// More init code here

locale uslocale = Locale.US;

Locale frLocale = Locale.FRANCE;

Locale zhliocale = new Locale("zh", "CN"):
Locale rulocale = new Locale("ru", "RU");

Locale currentlLocale = Locale.getDefault() ;

ResourceBundle messades = ResourceBundle.gelBundle ("MessayesBundle",
currentlLocale) ;

// more init code here

public static void main(String(] args){
SampleApp ui = new SampleZpp() ;

ui.run() ;

}

With the resource bundles created, you simply need to load the bundles into the
application.

The source code in the diagram shows the steps. First, create a Locale object that specifies
the language and country. Then load the resource bundle by specifying the base file name
for the bundle and the current Locale.

Note that there are a couple of ways to define a Locale. The Locale class includes default
constants for some countries. If a constant is not available, you can use the language code
with the country code to define the location. Finally, you can use the getDefault() method
to get the default location.

Sample Application: Main Loop

For this application, a run method contains the main loop. The loop runs until the letter "q”
is typed in as input. A string switch is used to perform an operation based on the number
entered.

A simple call is made to each method to make locale changes and display a formatted
output.

public void run/() {
String lime = "Y;
while (! (line.eguals("g"))){
this.printMenu() ;
try { line = this.br.readLine(); }
catch (Exception e){ e.printStackTrace(); }

switch (line)[

case "1": setEnglish(); break;

cage "2": getPFrench|(); break;
case "3": gsetChinese(); break;
case "4": getRussian(); break;
case "5": showDate(); break;
case "6": showMoney(); break;

The printMenu Method

Instead of text, a resource bundle is used.

e messages IS aresource bundle.
e Akeyis used to retrieve each menu item.
e language is selected based on the Locale setting.

public void priotMenu() {
pw.println("=== Localization App ==="
pw.printin("l. " + messages.getString("menul")) ;
pw.println("2. messages .getString ("menu2")) ;
pw.println("3. " messages.getString ("menul")) ;
pw.printin(*4. " messages.getString ("menu4")) ;

pw.println("5. " messages.getString ("menus")) ;

+ o+ + 4+ o+

pw.println("s. ™" messages.getString ("menus")) ;
pw.println("g. " + messages.getString ("menug")) ;

System.out.print (messages.getString ("menucommand")+" ") ;

Instead of printing text, the resource bundle (messages) is called and the current Locale
determines what language is presented to the user.

Changing the Locale

To change the Locale:

e Set currentLocale to the desired language.
e Reload the bundle by using the current locale.

public void setFrench() {

currentLocale = frlocale;
messages = ResourceBundle.getBundle ("MessagesBundle",
currentlLocale) ;

After the menu bundle is updated with the correct locale, the interface text is output by
using the currently selected language.

Sample Interface with French

After the French option is selected, the updated user interface looks like the following:

=== Localization App ===
Régler a 1'anglais
Régler au francais
Réglez chinoise
Définir pour la Russie
Afficher la date

. Montrez-moi 1'argent!

o TS XS) BTSN PSR 6 S oY

Saisissez g pour quitter

Entrez une commande:

Format Date and Currency

Changing text is not the only available localization tool. Dates and numbers can also be
formatted based on local standards.

e Numbers can be localized and displayed in their local format.
e Special format classes include:

o java.time.format.DateTimeFormatter

o java.text NumberFormat
o Create objects using Locale.

Displaying Currency

Create a NumberFormat object by using the selected locale and get a formatted output.

e Format currency:
o Get a currency instance from NumberFormat.
o Pass the Double to the format method.

e Sample currency output:

1 000 000 pyG. ru RU
1 000 000,00 € fr_FR
¥1,000,000.00 zh CN
£1,000,000.00 en GB

Formatting Currency with NumberFormat

Set the location and a numeric value to be displayed. Then, set up a NumberFormat object
with a specified location. Pass the Double to the format method to print the formatted
currency.

package com.example.format;

import java.text.NumberFormat;

import java.ubtil.Locale;
public class NumberTest ({

public static void main(String[] args) {

W0 0 - o W W N

[=]
o

Locale loc = Locale.UK;

=
[

NumberFormat nf = NumberFormat.getCurrencyInstance(loc);
double money = 1 000 000.004;

o
B W N

System.out.println("Money: " + nf.format (money) + " in
Locale: " + loc) ;

}

et
(p}

16 }

Displaying Dates

Create a date format object by using the locale and the date is formatted for the selected
locale.

e Formata date:
o Get a DateTimeFormatter object based on the Locale.
o From the LocalDateTime variable, call the format method passing the
formatter.
e Sample dates:

20 juil. 2011 fr FR
20.07.2011 ru RU

Displaying Dates with DateTimeFormatter

The setup of the DateTimeFormatter is a bit verbose, but fairly clear. A factory is used to
specify a style and a locale. Then the formatter is passed to the LocalDateTime object’s
format method.

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;

import java.time.format.FormatStyle;

public class DateFormatTest {

3

4

5

6 import java.util.Locale;

7

8

9 public static void main(Stringl]l args) {
0

1

11 LocalDateTime today = LocalDateTime.now() ;

12 Locale loc = Locale.FRANCE;

13

14 DateTimeFormatter df =

15 DateTimeFormatter.oflLocalizedDate (FormatStyle.FULL)
16 .withLocale(loc) ;

g System.out.println("Date: " + today.format (df)

18 + " Locale: " + loc.toStringl());

19 |}

Format Styles

o DateTimeFormatter uses the FormatStyle enumeration to determine how the data is
formatted.

e Enumeration values

SHORT: Is completely numeric, such as 12.13.52 or 3:30 pm

MEDIUM: Is longer, such as Jan 12, 1952

LONG: Is longer, such as January 12, 1952 or 3:30:32 pm

FULL: Is completely specified date or time, such as Tuesday, April 12, 1952

AD or 3:30:42 pm PST

O O O O

