
Java API Programming and Secure Coding Concepts 
 

Java does provide strong, flexible support for I/O as it relates to files and networks. Java’s 
I/O system is cohesive and consistent. In fact, once you understand its fundamentals, the 
rest of the I/O system is easy to master. 

 

Streams 
 

Java programs perform I/O through streams.  

A stream is an abstraction that either produces or consumes information. A stream is linked 
to a physical device by the Java I/O system.  

All streams behave in the same manner, even if the actual physical devices to which they 
are linked differ. Thus, the same I/O classes and methods can be applied to different types 
of devices. This means that an input stream can abstract many different kinds of input: 
from a disk file, a keyboard, or a network socket.  

Likewise, an output stream may refer to the console, a disk file, or a network connection.  

Streams are a clean way to deal with input/output without having every part of your code 
understand the difference between a keyboard and a network, for example.  

Java implements streams within class hierarchies defined in the java.io package. 

 

Byte Streams and Character Streams 
 

Java defines two types of streams: byte and character.  

Byte streams provide a convenient means for handling input and output of bytes. Byte 
streams are used, for example, when reading or writing binary data.  

Character streams provide a convenient means for handling input and output of 
characters. They use Unicode and, therefore, can be internationalized. Also, in some cases, 
character streams are more efficient than byte streams. 

 

The Byte Stream Classes 
 

Byte streams are defined by using two class hierarchies. At the top are two abstract classes: 
InputStream and OutputStream. Each of these abstract classes has several concrete 
subclasses that handle the differences among various devices, such as disk files, network 
connections, and even memory buffers. 



 

 

The abstract classes InputStream and OutputStream define several key methods that the 
other stream classes implement. Two of the most important are read( ) and write( ), which, 
respectively, read and write bytes of data. Each has a form that is abstract and must be 
overridden by derived stream classes. 

 

The Character Stream Classes 
 

Character streams are defined by using two class hierarchies. At the top are two abstract 
classes: Reader and Writer. These abstract classes handle Unicode character streams. Java 
has several concrete subclasses of each of these. 



 

The abstract classes Reader and Writer define several key methods that the other stream 
classes implement. Two of the most important methods are read( ) and write( ), which read 
and write characters of data, respectively. Each has a form that is abstract and must be 
overridden by derived stream classes. 

 

Reading Console Input 
 

In Java, console input is accomplished by reading from System.in. To obtain a character-
based stream that is attached to the console, wrap System.in in a BufferedReader object. 
BufferedReader supports a buffered input stream. A commonly used constructor is shown 
here: 

BufferedReader(Reader inputReader) 

Here, inputReader is the stream that is linked to the instance of BufferedReader that is 
being created. Reader is an abstract class. One of its concrete subclasses is 
InputStreamReader, which converts bytes to characters. To obtain an InputStreamReader 
object that is linked to System.in, use the following constructor:  

InputStreamReader(InputStream inputStream) 

Because System.in refers to an object of type InputStream, it can be used for inputStream.  



Putting it all together, the following line of code creates a BufferedReader that is 
connected to the keyboard: 

BufferedReader br = new BufferedReader(new 
InputStreamReader(System.in)); 

After this statement executes, br is a character-based stream that is linked to the console 
through System.in. 

 

Reading Characters 
 

To read a character from a BufferedReader, use read( ). The version of read( ) that we will 
be using is 

int read( ) throws IOException 

Each time that read( ) is called, it reads a character from the input stream and returns it as 
an integer value. It returns –1 when the end of the stream is encountered. As you can see, 
it can throw an IOException. 

The following program demonstrates read( ) by reading characters from the console until 
the user types a "q." Notice that any I/O exceptions that might be generated are simply 
thrown out of main( ). Such an approach is common when reading from the console in 
simple example programs such as those shown in this book, but in more sophisticated 
applications, you can handle the exceptions explicitly. 

 

package com.example.io; 
 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
 
//Use a BufferedReader to read characters from the console. 
 
public class BRRead { 
 
 public static void main(String[] args) throws IOException { 
  char c; 
  BufferedReader br = new BufferedReader(new 
InputStreamReader(System.in)); 
  System.out.println("Enter characters, 'q' to quit."); 
  // read characters 
  do { 
   c = (char) br.read(); 
   System.out.println(c); 
  } while (c != 'q'); 
 
 } 
 
} 
 



Reading Strings 
 

To read a string from the keyboard, use the version of readLine( ) that is a member of the 
BufferedReader class. Its general form is shown here: 

String readLine( ) throws IOException 

As you can see, it returns a String object. 

The following program demonstrates BufferedReader and the readLine( ) method; the 
program reads and displays lines of text until you enter the word "stop": 

 

package com.example.io; 
 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
 
//Read a string from console using a BufferedReader. 
 
public class BRReadLines { 
 
 public static void main(String[] args) throws IOException { 
  // create a BufferedReader using System.in 
  BufferedReader br = new BufferedReader(new 
InputStreamReader(System.in)); 
  String str; 
  System.out.println("Enter lines of text."); 
  System.out.println("Enter 'stop' to quit."); 
  do { 
   str = br.readLine(); 
   System.out.println(str); 
  } while (!str.equals("stop")); 
 } 
 
} 
 

The next example creates a tiny text editor. It creates an array of String objects and then 
reads in lines of text, storing each line in the array. It will read up to 100 lines or until you 
enter "stop." It uses a BufferedReader to read from the console. 

 

package com.example.io; 
 
import java.io.BufferedReader; 
import java.io.IOException; 
import java.io.InputStreamReader; 
 
//A tiny editor. 
 
public class TinyEdit { 
 
 public static void main(String[] args) throws IOException { 
  // create a BufferedReader using System.in 



  BufferedReader br = new BufferedReader(new 
InputStreamReader(System.in)); 
  String str[] = new String[100]; 
 
  System.out.println("Enter lines of text."); 
  System.out.println("Enter 'stop' to quit."); 
 
  for (int i = 0; i < 100; i++) { 
   str[i] = br.readLine(); 
   if (str[i].equals("stop")) 
    break; 
  } 
 
  System.out.println("\nHere is your file:"); 
 
  // display the lines 
  for (int i = 0; i < 100; i++) { 
   if (str[i].equals("stop")) 
    break; 
   System.out.println(str[i]); 
  } 
 } 
 
} 
 

Writing Console Output 
 

Console output is most easily accomplished with print( ) and println( ), described earlier, 
which are used in most of the examples in this book. These methods are defined by the 
class PrintStream (which is the type of object referenced by System.out). Even though 
System.out is a byte stream, using it for simple program output is still acceptable. However, 
a character-based alternative is described in the next section. 

Because PrintStream is an output stream derived from OutputStream, it also implements 
the low-level method write( ). Thus, write( ) can be used to write to the console. The 
simplest form of write( ) defined by PrintStream is shown here: 

void write(int byteval) 

This method writes the byte specified by byteval. Although byteval is declared as an integer, 
only the low-order eight bits are written. Here is a short example that uses write( ) to output 
the character "A" followed by a newline to the screen: 

 

package com.example.io; 
 
//Demonstrate System.out.write(). 
 
public class WriteDemo { 
 
 public static void main(String[] args) { 
  int b; 
  b = 'A'; 
  System.out.write(b); 
  System.out.write('\n'); 



 } 
 
} 
 

You will not often use write( ) to perform console output (although doing so might be 
useful in some situations) because print( ) and println( ) are substantially easier to use. 

 

The PrintWriter Class 
 

Although using System.out to write to the console is acceptable, its use is probably best for 
debugging purposes or for sample programs, such as those found in this book.  

For real-world programs, the recommended method of writing to the console when using 
Java is through a PrintWriter stream. PrintWriter is one of the character-based classes. 
Using a character-based class for console output makes internationalizing your program 
easier. 

PrintWriter defines several constructors. The one we will use is shown here: 

PrintWriter(OutputStream outputStream, boolean flushingOn) 

Here, outputStream is an object of type OutputStream, and flushingOn controls whether 
Java flushes the output stream every time a println( ) method (among others) is called. If 
flushingOn is true, flushing automatically takes place. If false, flushing is not automatic. 

 

The following application illustrates using a PrintWriter to handle console output: 

 

package com.example.io; 
 
import java.io.PrintWriter; 
 
//Demonstrate PrintWriter 
 
public class PrintWriterDemo { 
 
 public static void main(String[] args) { 
  PrintWriter pw = new PrintWriter(System.out, true); 
   
  pw.println("This is a string"); 
  int i = -7; 
  pw.println(i); 
  double d = 4.5e-7; 
  pw.println(d); 
 
 } 
 
} 
 



Reading and Writing Files 
 

The following program uses read( ) to input and display the contents of a file that contains 
ASCII text. The name of the file is specified as a command-line argument. 

 

package com.example.io; 
 
import java.io.FileInputStream; 
import java.io.FileNotFoundException; 
import java.io.IOException; 
 
/* Display a text file. 
  
 To use this program, specify the name 
 of the file that you want to see. 
 For example, to see a file called TEST.TXT, 
 use the following command line. 
  
 java ShowFile TEST.TXT 
*/ 
 
public class ShowFile { 
 
 public static void main(String[] args) { 
  int i; 
  FileInputStream fin = null; 
   
  // First, confirm that a filename has been specified. 
  if (args.length != 1) { 
   System.out.println("Usage: ShowFile filename"); 
   return; 
  } 
   
  // The following code opens a file, reads characters until EOF 
  // is encountered, and then closes the file via a finally block. 
  try { 
   fin = new FileInputStream(args[0]); 
   do { 
    i = fin.read(); 
    if (i != -1) 
     System.out.print((char) i); 
   } while (i != -1); 
  } catch (FileNotFoundException e) { 
   System.out.println("File Not Found."); 
  } catch (IOException e) { 
   System.out.println("An I/O Error Occurred"); 
  } finally { 
   // Close file in all cases. 
   try { 
    if (fin != null) 
     fin.close(); 
   } catch (IOException e) { 
    System.out.println("Error Closing File"); 
   } 
  } 
 



 } 
 
} 
 

Automatically Closing a File 
 

Automatic resource management is based on an expanded form of the try statement. Here 
is its general form: 

try (resource-specification) { 
    // use the resource 
} 

Here, resource-specification is a statement that declares and initializes a resource, such as 
a file stream. It consists of a variable declaration in which the variable is initialized with a 
reference to the object being managed. When the try block ends, the resource is 
automatically released.  

In the case of a file, this means that the file is automatically closed. (Thus, there is no need 
to call close( ) explicitly.) Of course, this form of try can also include catch and finally 
clauses. This new form of try is called the try-with-resources statement. 

The try-with-resources statement can be used only with those resources that implement 
the AutoCloseable interface defined by java.lang. This interface defines the close( ) method. 
AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces are 
implemented by the stream classes. Thus, try-with-resources can be used when working 
with streams, including file streams. 

 

package com.example.io; 
 
import java.io.FileInputStream; 
import java.io.FileOutputStream; 
import java.io.IOException; 
 
/* A version of CopyFile that uses try-with-resources. 
 It demonstrates two resources (in this case files) being 
 managed by a single try statement. 
*/ 
 
public class CopyFile { 
 
 public static void main(String[] args) { 
  int i; 
   
  // First, confirm that both files have been specified. 
  if (args.length != 2) { 
   System.out.println("Usage: CopyFile from to"); 
   return; 
  } 
   
  // Open and manage two files via the try statement. 
  try (FileInputStream fin = new FileInputStream(args[0]); 



    FileOutputStream fout = new FileOutputStream(args[1])) 
{ 
   do { 
    i = fin.read(); 
    if (i != -1) 
     fout.write(i); 
   } while (i != -1); 
  } catch (IOException e) { 
   System.out.println("I/O Error: " + e); 
  } 
 
 } 
 
} 
 

The NIO Classes 
 

Beginning with version 1.4, Java has provided a second I/O system called NIO (which is 
short for New I/O). It supports a buffer-oriented, channel-based approach to I/O perations.  

With the release of JDK 7, the NIO system was greatly expanded, providing enhanced 
support for file-handling and file system features. In fact, so significant were the changes 
that the term NIO.2 is often used. Because of the capabilities supported by the NIO file 
classes, NIO is expected to become an increasingly important approach to file handling. 

The NIO classes are contained in the packages shown here: 

 

 

NIO Fundamentals 
 

The NIO system is built on two foundational items: buffers and channels.  

A buffer holds data.  

A channel represents an open connection to an I/O device, such as a file or a socket.  

In general, to use the NIO system, you obtain a channel to an I/O device and a buffer to 
hold data. You then operate on the buffer, inputting or outputting data as needed.  



Buffers 
 

Buffers are defined in the java.nio package. All buffers are subclasses of the Buffer class, 
which defines the core functionality common to all buffers: current position, limit, and 
capacity.  

The current position is the index within the buffer at which the next read or write operation 
will take place. The current position is advanced by most read or write operations.  

The limit is the index value one past the last valid location in the buffer.  

The capacity is the number of elements that the buffer can hold.  

Often the limit equals the capacity of the buffer. Buffer also supports mark and reset. 

 



 

 

Channels 
 

Channels are defined in java.nio.channels. A channel represents an open connection to an 
I/O source or destination. Channels implement the Channel interface. It extends Closeable, 
and it extends AutoCloseable. By implementing AutoCloseable, channels can be managed 
with a try-with-resources statement. When used in a try-with-resources block, a channel is 
closed automatically when it is no longer needed.  



 

One way to obtain a channel is by calling getChannel( ) on an object that supports 
channels. For example, getChannel( ) is supported by the following I/O classes: 

 

 

Enhancements Added to NIO by JDK 7 
 

Beginning with JDK 7, the NIO system was substantially expanded and enhanced. In 
addition to support for the try-with-resources statement (which provides automatic 
resource management), the improvements included three new packages (java.nio.file, 
java.nio.file.attribute, and java.nio.file.spi); several new classes, interfaces, and methods; and 
direct support for stream-based I/O. The additions have greatly expanded the ways in 
which NIO can be used, especially with files. 

 



The Path Interface 
 

Perhaps the single most important addition to the NIO system is the Path interface because 
it encapsulates a path to a file. As you will see, Path is the glue that binds together many of 
the NIO.2 file-based features. It describes a file’s location within the directory structure.  

Path is packaged in java.nio.file, and it inherits the following interfaces: Watchable, 
Iterable<Path>, and Comparable<Path>. Watchable describes an object that can be 
monitored for changes. 

 

 

 



The Files Class 
 

Many of the actions that you perform on a file are provided by static methods within the 
Files class. The file to be acted upon is specified by its Path. Thus, the Files methods use a 
Path to specify the file that is being operated upon. Files contains a wide array of 
functionality.  

For example, it has methods that let you open or create a file that has the specified path. 
You can obtain information about a Path, such as whether it is executable, hidden, or read-
only. Files also supplies methods that let you copy or move files. 

JDK 8 adds these four methods to Files: list( ), walk( ), lines( ), and find( ). All return a Stream 
object. 

 

The Paths Class 
 

Because Path is an interface, not a class, you can’t create an instance of Path directly 
through the use of a constructor. Instead, you obtain a Path by a calling a method that 
returns one. Frequently, you do this by using the get( ) method defined by the Paths class.  

There are two forms of get( ). The one used in this chapter is shown here: 

static Path get(String pathname, String ... parts) 

It returns a Path that encapsulates the specified path.  

The path can be specified in two ways. First, if parts is not used, then the path must be 
specified in its entirety by pathname.  

Alternatively, you can pass the path in pieces, with the first part passed in pathname and 
the subsequent elements specified by the parts varargs parameter. In either case, if the 
path specified is syntactically invalid, get( ) will throw an InvalidPathException. 

The second form of get( ) creates a Path from a URI. It is shown here: 

static Path get(URI uri) 

The Path corresponding to uri is returned. 

It is important to understand that creating a Path to a file does not open or create a file. It 
simply creates an object that encapsulates the file’s directory path. 

 

The File Attribute Interfaces 
 

Associated with a file is a set of attributes. These attributes include such things as the file’s 
time of creation, the time of its last modification, whether the file is a directory, and its size. 
NIO organizes file attributes into several different interfaces. Attributes are represented by a 
hierarchy of interfaces defined in java.nio.file.attribute. At the top is BasicFileAttributes. It 
encapsulates the set of attributes that are commonly found in a variety of file systems. 



 

 

The FileSystem , FileSystems, and FileStore Classes 
 

You can easily access the file system through the FileSystem and FileSystems classes 
packaged in java.nio.file. In fact, by using the newFileSystem( ) method defined by 
FileSystems, it is even possible to obtain a new file system. The FileStore class encapsulates 
the file storage system. Although these classes are not used directly in this chapter, you 
may find them helpful in your own applications. 

 

Secure Coding 
 

Refer to page Secure Coding Guidelines for Java SE (oracle.com) 

 

Localization 
 

Why Localize? 
 

The decision to create a version of an application for international use often happens at the 
start of a development project. 

 Region– and language-aware software. 
 Dates, numbers, and currencies formatted for specific countries. 
 Ability to plug in country-specific data without changing code. 

 



Localization is the process of adapting software for specific region or language by adding 
locale-specific components and translating text. 

The goal is to design for localization so that no coding changes are required. 

A Sample Application 
 

Localize a sample application. 

 Text-based user interface. 
 Localize menus. 
 Display currency and date localizations. 

 

 

Locale 
 

In Java, a locale is specified by using two values: language and country. 

 Language 
o An alpha-2 or alpha-3 ISO 639 code 
o “en” for English, “es” for Spanish 
o Always uses lowercase 

 Country 
o Uses the ISO 3166 alpha-2 country code or UN M.49 numeric area code 
o "US" for United States, "ES" for Spain 
o Always uses uppercase 

 

Reference on localization Creating a Locale (The Java™ Tutorials > Internationalization > 
Setting the Locale) (oracle.com) 

 

  



Properties 
 

 The java.util.Properties class is used to load and save key-value pairs in Java. 
 Can be stored in a simple text file. 
 File name ends in .properties 
 File can be anywhere that compiler can find it. 

 

The benefit of a properties file is the ability to set values for your application externally. The 
properties file is typically read at the start of the application and is used for default values. 
But the properties file can also be an integral part of a localization scheme, where you 
store the values of menu labels and text for various languages that your application may 
support. 

The convention for a properties file is <filename>.properties, but the file can have any 
extension you want. The file can be located anywhere that the application can find it. 

 

Loading and Using a Properties File 
 

 

In the code fragment, you create a Properties object. Then, using a try statement, you 
open a file relative to the source files in your NetBeans project. When it is loaded, the 
name-value pairs are available for use in your application. 

Properties files enable you to easily inject configuration information or other application 
data into the application. 

 



Loading Properties from the Command Line 
 

 Property information can also be passed on the command line. 
 Use the –D option to pass key-value pairs: 

 

 For example, pass one of the previous values: 

 

 Get the Properties data from the System object: 

 

 

Property information can also be passed on the command line. The advantage to passing 
properties from the command line is simplicity. You do not have to open a file and read 
from it. However, if you have more than a few parameters, a properties file is preferable. 

 

Resource Bundle 
 

Design for localization begins by designing the application so that all the text, sounds, and 
images can be replaced at run time with the appropriate elements for the region and 
culture desired. Resource bundles contain key-value pairs that can be hard-coded within a 
class or located in a .properties file. 

 The ResourceBundle class isolates locale-specific data: 
o Returns key/value pairs stored separately. 
o Can be a class or a .properties file. 

 Steps to use: 
o Create bundle files for each locale. 
o Call a specific locale from your application. 

 

Resource Bundle File 
 

 Properties file contains a set of key-value pairs. 
o Each key identifies a specific application component. 
o Special file names use language and country codes. 

 Default for sample application. 
o Menu converted into resource bundle. 

 



 

The diagram shows a sample resource bundle file for this application. Each menu option 
has been converted into a name/value pair. This is the default file for the application. For 
alternative languages, a special naming convention is used: 

MessageBundle_xx_YY.properties 

where xx is the language code and YY is the country code. 

 

Samples for French and Chinese. 
 

 

 

The diagram shows the resource bundle files for French and Chinese. Note that the file 
names include both language and country. The English menu item text has been replaced 
with French and Chinese alternatives. 

 



Initializing the Sample Application 
 

 

With the resource bundles created, you simply need to load the bundles into the 
application.  

The source code in the diagram shows the steps. First, create a Locale object that specifies 
the language and country. Then load the resource bundle by specifying the base file name 
for the bundle and the current Locale. 

Note that there are a couple of ways to define a Locale. The Locale class includes default 
constants for some countries. If a constant is not available, you can use the language code 
with the country code to define the location. Finally, you can use the getDefault() method 
to get the default location. 

 

Sample Application: Main Loop 
 

For this application, a run method contains the main loop. The loop runs until the letter “q” 
is typed in as input. A string switch is used to perform an operation based on the number 
entered.  

A simple call is made to each method to make locale changes and display a formatted 
output. 



 

 

The printMenu Method 
 

Instead of text, a resource bundle is used. 

 messages is a resource bundle. 
 A key is used to retrieve each menu item. 
 Language is selected based on the Locale setting. 

 

 

Instead of printing text, the resource bundle (messages) is called and the current Locale 
determines what language is presented to the user. 

  



Changing the Locale 
 

To change the Locale: 

 Set currentLocale to the desired language. 
 Reload the bundle by using the current locale. 

 

After the menu bundle is updated with the correct locale, the interface text is output by 
using the currently selected language. 

 

Sample Interface with French 
 

After the French option is selected, the updated user interface looks like the following: 

 

 

Format Date and Currency 
 

Changing text is not the only available localization tool. Dates and numbers can also be 
formatted based on local standards. 

 Numbers can be localized and displayed in their local format. 
 Special format classes include: 

o java.time.format.DateTimeFormatter 
o java.text.NumberFormat 

 Create objects using Locale. 

 



Displaying Currency 
 

Create a NumberFormat object by using the selected locale and get a formatted output. 

 Format currency: 
o Get a currency instance from NumberFormat. 
o Pass the Double to the format method. 

 Sample currency output: 

 

Formatting Currency with NumberFormat 
 

Set the location and a numeric value to be displayed. Then, set up a NumberFormat object 
with a specified location. Pass the Double to the format method to print the formatted 
currency. 

 

 

  



Displaying Dates 
 

Create a date format object by using the locale and the date is formatted for the selected 
locale. 

 Format a date: 
o Get a DateTimeFormatter object based on the Locale. 
o From the LocalDateTime variable, call the format method passing the 

formatter. 
 Sample dates: 

 

 

Displaying Dates with DateTimeFormatter 
 

The setup of the DateTimeFormatter is a bit verbose, but fairly clear. A factory is used to 
specify a style and a locale. Then the formatter is passed to the LocalDateTime object’s 
format method. 

 

 

  



Format Styles 
 

 DateTimeFormatter uses the FormatStyle enumeration to determine how the data is 
formatted. 

 Enumeration values 
o SHORT: Is completely numeric, such as 12.13.52 or 3:30 pm 
o MEDIUM: Is longer, such as Jan 12, 1952 
o LONG: Is longer, such as January 12, 1952 or 3:30:32 pm 
o FULL: Is completely specified date or time, such as Tuesday, April 12, 1952 

AD or 3:30:42 pm PST 

 

 

 

 

 

 

 

 

 

  


