Practices for Lesson 13: Java
/O Fundamentals

Chapter 13

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 1

Practices for Lesson 13: Overview

Practices Overview

In these practices, you will use some of the java.io classes to read from the console, open and
read files, and serialize and deserialize objects to and from the file system.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 2

Practice 13-1: Summary Level: Writing a Simple Console I/O0
Application

Overview

In this practice, you will write a simple console-based application that reads from and writes to
the system console. In NetBeans, the console is opened as a window in the IDE.

Tasks

1.

2.

Open the project FileScanner13-01Prac in the following directory:
/home/oracle/labs/13-I0 Fundamentals/practices/practicel

Open the file FileScanInteractive.java.

Notice that the class has a method called countTokens already written for you. This
method takes a String £ile and String search as parameters. The method will open the
file name passed in and use an instance of a Scanner to look for the search token. For
each token encountered, the method increments the integer field instanceCount. When
the file is exhausted, it returns the value of instanceCount. Note that the class rethrows
any IOException encountered, so you will need to be sure to use this method inside a
try-catch block.
Code the main method to check the number of arguments passed. The application expects
at least one argument (a string representing the file to open). If the number of arguments is
less than one, exit the application with an error code (-1).
a. The main method is passed an array of Strings. Use the 1ength attribute to determine
whether the array contains less than one argument.

b. Print a message if there is less than one argument, and use System.exit to return
an error code. (-1 typically is used to indicate an error.)

Save the first argument passed into the application as a String.

Create an instance of the FileScanInteractive class. You will need this instance to

call the countTokens method.

Open the system console for input using a buffered reader.

a. Use a try-with-resources to open a Buf feredReader chained to the system console
input. (Recall that System. in is an input stream connected to the system console.)

b. Be sure to add a catch statement to the try block. Any exception returned will be an
IOException type.

c. In a while loop, read from the system console into a string until the string
on the console by itself.
Note: You can use equalsIgnoreCase to allow your users to enter an upper- or
lowercase “Q.” Also the trim () method is a good choice to remove any whitespace
characters from the input.

d. If the string read from the console is not the terminate character, call the
countTokens method, passing in the file name and the search string.

e. Print a string indicating how many times the search token appeared in the file.

f. Add any missing import statements.

Save the FileScanInteractive class.

[T}

q” is entered

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals

Chapter 13 - Page 3

8. If you have no compilation errors, you can test your application by using a file from the
resources directory.

a. Right-click the project and select Properties.
b. Click Run.

c. Enter the name of a file to open in the Arguments text box, for example:
/home/oracle/labs/resources/DeclarationOf Independence.txt

d. Click OK.

Run the application and try searching for some words like when, rights, and free.
Your output should look something like this:

Searching through the file:
/home/oracle/labs/resources/DeclarationOf Independence. txt

Enter the search string or g to exit: when
The word "when" appears 3 times in the file.
Enter the search string or g to exit: rights
The word "rights" appears 3 times in the file.
Enter the search string or g to exit: free
The word "free" appears 4 times in the file.
Enter the search string or g to exit: g

BUILD SUCCESSFUL (total time: 16 seconds)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 4

Practice 13-1: Detailed Level: Writing a Simple Console I/O
Application

Overview

In this practice, you will write a simple console-based application that reads from and writes to
the system console. In NetBeans, the console is opened as a window in the IDE.

Tasks
1. Open the project FileScanner13-01Prac.
a. Select File > Open Project.
b. Browse to /home/oracle/labs/13-I0 Fundamentals/practices/practicel.
c. Select FileScannerl13-01Prac and select the “Open as Main Project” check box.
d. Click the Open Project button.
2. Open thefile FileScanInteractive.java.

Notice that the class has a method called countTokens already written for you. This
method takes a String file and String search as parameters. The method will open the
file name passed in and use an instance of a Scanner to look for the search token. For
each token encountered, the method increments the integer field instanceCount. When
the file is exhausted, it returns the value of instanceCount. Note that the class rethrows
any IOException encountered, so you will need to be sure to use this method inside a
try-catch block.

3. Code the main method to check the number of arguments passed.

The application expects at least one argument (a string representing the file to open). If the
number of arguments is less than one, exit the application with an error code (-1).

a. The main method is passed an array of Strings. Use the 1ength attribute to determine
whether the array contains less than one argument.

b. Print a message if there is less than one argument, and use System.exit to return
an error code. (-1 typically is used to indicate an error.) For example:

if (args.length < 1) {

System.out.println ("Usage: java FileScanInteractive <file to
search>") ;

System.exit (-1);

}

4. Save the first argument passed into the application as a String.
String file = args|[0];

5. Create an instance of the FileScanInteractive class. You will need this instance to
call the countTokens method.

FileScanInteractive scan = new FileScanInteractive () ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 5

6.

7.

Open the system console for input using a buffered reader.

a.

g.

Use a try-with-resources to open a Buf feredReader chained to the system console
input. (Recall that System. in is an input stream connected to the system console.)

Be sure to add a catch statement to the try block. Any exception returned will be an
I0Exception type. For example:

try (BufferedReader in =
new BufferedReader (new InputStreamReader (System.in))) {

} catch (IOException e) { // Catch any IO exceptions.
System.out .println ("Exception: " + e);
System.exit (-1) ;

}

In the try block that you created, add a while loop. The while loop should run until a
break statement. Inside the while loop, read from the system console into a string until
the string “q” is entered on the console by itself.

Note: You can use equalsIgnoreCase to allow your users to enter an upper- or
lowercase “Q.” Also the trim () method is a good choice to remove any whitespace
characters from the input.

If the string read from the console is not the terminate character, call the

countTokens method, passing in the file name and the search string.
Print a string indicating how many times the search token appeared in the file.
Your code inside the try block should look something like this:

String search = "";
System.out.println ("Searching through the file: " + file);
while (true) ({

System.out .print ("Enter the search string or g to exit: ");

search = in.readLine () .trim() ;

if (search.equalsIgnoreCase("g")) {

break;

}

int count = scan.countTokens(file, search);

System.out .println("The word \"" + search + "\" appears "
+ count + " times in the file.");

}

Add any missing import statements.

Save the FileScanInteractive class.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals

Chapter 13 - Page 6

If you have no compilation errors, you can test your application by using a file from the

resources directory.

a.
b.
C.

Right-click the project and select Properties.
Select Run from the Categories column.

Enter the name of a file to open in the Arguments text box, for example:
/home/oracle/labs/resources/DeclarationOf Independence.txt

Click OK.

) Project Properties - FileScannerSolution ﬁ

Categories:

o @ Sources

o Libraries Configuration: |<default config=> =7 Mews... Delete
= Build
=2 Complll.ng Main Class: @ample.FileScanInteractive
+ = Packaging
< Deployment arationOfIndependence.txt -
Lo Documenting
----- = m =g Working Directory:
..... @ License Headers (e.g. -Xms10m)
----- < Formatting
..... < Hints Run with Java Web Start

(To run and debug the application with Java Web Start, first enak

|[ok || cancel || Help

Run the application and try searching for some words like when, rights, and free.
Your output should look something like this:

Searching through the file:
/home/oracle/labs/resources/DeclarationOf Independence.txt

Enter the search string or g to exit: when
The word "when" appears 3 times in the file.
Enter the search string or g to exit: rights
The word "rights" appears 3 times in the file.
Enter the search string or g to exit: free
The word "free" appears 4 times in the file.
Enter the search string or g to exit: g

BUILD SUCCESSFUL (total time: 16 seconds)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals

Chapter 13 - Page 7

Practice 13-2: Summary Level: Serializing and Deserializing a
ShoppingCart

Overview

In this practice, you use the java.io.0ObjectOutputStream class to write a Java object to
the file system (serialize), and then use the same stream to read the file back into an object
reference. You will also customize the serialization and deserialization of the ShoppingCart
object.

Tasks
1. Openthe SerializeShoppingCartl13-02Prac project in the directory:
/home/oracle/labs/13-I0 Fundamentals/practices/practice2

2. Expand the com.example.test package. Notice there are two Java main classes in this
package, SerializeTest and DeserializeTest. You will be writing the code in these
main classes to serialize and deserialize ShoppingCart objects.

3. Openthe SerializeTest.java. You will write the methods in this class to write several
ShoppingCart objects to the file system.

a. Read through the code. You will note that the class prompts for the cart ID and
constructs an instance of ShoppingCart with the cart ID in the constructor.

The code then adds three Item objects to the ShoppingCart.

The code then prints out the number of items in the cart, and the total cost of the items
in the cart. Look through the ShoppingCart and Item classes in the
com. example.domain package for details on how these classes work.

d. You will be writing the code to open an ObjectOutputStream and write the
ShoppingCart as a serialized object on the file system.

4. Create the try block to open a FileOutputStream chained to an
ObjectOutputStream. The file name is already constructed for you.

a. Your code will go where the comment line is at the bottom of the file.
b. Open a FileOutputStream with the cartFile string in a try-with-resources block.

c. Pass the file output stream instance to an ObjectOutputStream to write the
serialized object instance to the file.

d. Write the cart object to the object output stream instance by using the writeObject
method.

e. Be sure to catch any I0Exception and exit with an error as necessary.

f. Add a success message before the method ends:

System.out.println ("Successfully serialized shopping cart with
ID: " + cart.getCartID());

g. Save the file.

5. Open the DeserializeTest.java. The main method in this class reads from the console
for the ID of the customer shopping cart to deserialize.

6. Your code will go where the comment line is at the bottom of the file.
a. OpenaFileInputStreamwith the cartFile string in a try-with-resources block.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 8

b. Pass the file input stream instance to an ObjectOutputStream to read the serialized
object instance from the file.

c. Read the cart object from the object input stream using the readobject method. Be
sure to cast the result to the appropriate object type.

d. You will need to catch both ClassNotFoundException and IOException, SO Use a
multi-catch expression.

e. Finally, print out the results of the cart (all of its contents) and the cart total cost
using the following code:

System.out .println ("Shopping Cart contains: ");

List<Item> cartContents = cart.getItems() ;

for (Item item : cartContents) {
System.out.println (item) ;

}

System.out.println ("Shopping cart total: " +
NumberFormat .getCurrencylInstance () .format (cart.getCartTotal ())) ;

f. Save the file.

7. Open the SshoppingCart.java. You will customize the serialization and deserialization of
this class by adding the two methods called during serialization/deserialization.

a. AddawriteObject method invoked during serialization. This method should
serialize the current object fields and then add a timestamp (Date object instance) to
end of the object stream.

8. Add a method to the shoppingCart class that is invoked during deserialization.

a. Adda readObject method with the appropriate signature. This method will
recalculate the total cost of the shopping cart and print the timestamp that was added
to the stream.

b. Save the file.

9. Test the application. This application has two main methods, so you will need to run each
main in turn.

a. Torunthe SerializeTest.java, right-click the class name and select Run File.
b. The output will look like this:

Enter the ID of the cart file to create and serialize or g exit.
101

Shopping cart 101 contains 3 items

Shopping cart total: $58.39

Successfully serialized shopping cart with ID: 101

c. Torunthe DeserializeTest.java, right-click the class name and select Run File.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 9

d. Enterthe ID 101 and the output will look like something this:

rumn:

Enter the ID of the cart file to deserialize or g exit.

101

Bestored Shopping Cart from: Apr 1lé, 2014

Successfully deserialized shopping cart with ID: 101

Shopping cart contains:

Item ID: 101 Description: Duke Plastic Circular Flying Diac Cost: 10_.895

Item ID: 123 Description: Duke Soccer Pro Soccer ball Cost: 25_85

Item ID: 45 Description: Duke "The Edge™ Tennis Balls — 12-Ball Bag Cost: 17.4%5
Shopping cart total: %58.39%9

BUILD SUCCESSFUL (total time: 4 seconds)

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 10

Practice 13-2: Detailed Level: Serializing and Deserializing a
ShoppingCart

Overview

In this practice, you use the java.io.0ObjectOutputStream class to write a Java object to
the file system (serialize), and then use the same stream to read the file back into an object
reference. You will also customize the serialization and deserialization of the ShoppingCart
object.

Tasks
1. Openthe SerializeShoppingCartl3-02Prac project in the
/home/oracle/labs/13-I0 Fundamentals/practices/practice2 directory.
a. Select File > Open Project.
b. Browse to the /home/oracle/labs/13-
I0 Fundamentals/practices/practice2 directory.
c. Selectthe project SerializeShoppingCartl13-02Prac.
d. Click Open Project.

2. Expand the com.example.test package. Notice there are two Java main classes in this
package, SerializeTest and DeserializeTest. You will be writing the code in these
main classes to serialize and deserialize ShoppingCart objects.

3. Open the SserializeTest.java. You will write the methods in this class to write several
ShoppingCart objects to the file system.

a. Read through the code. You will note that the class prompts for the cart ID and
constructs an instance of ShoppingCart with the cart ID in the constructor.

The code then adds three Item objects to the ShoppingCart.

The code then prints out the number of items in the cart, and the total cost of the items
in the cart. Look through the ShoppingCart and Item classes in the
com.example.domain package for details on how these classes work.

d. You will be writing the code to open an ObjectOutputStream and write the
ShoppingCart as a serialized object on the file system.

4. Create the try block to open a FileOutputStream chained to an
ObjectOutputStream. The file name is already constructed for you.

a. Your code will go where the comment line is at the bottom of the file.
b. Open a FileOutputStream with the cartFile string in a try-with-resources block.

c. Pass the file output stream instance to an ObjectOutputStream to write the
serialized object instance to the file.

d. Write the cart object to the object output stream instance by using the writeObject
method.

e. Be sure to catch any IOException and exit with an error as necessary.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 11

h.

Your code might look like this:

try (FileOutputStream fos = new FileOutputStream (cartFile);
ObjectOutputStream o = new ObjectOutputStream (fos)) {
o.writeObject (cart) ;

} catch (IOException e) ({

System.out .println ("Exception serializing " + cartFile + ":
"+ oe);

System.exit (-1);

}

Add a success message before the method ends:

System.out.println ("Successfully serialized shopping cart with
ID: " + cart.getCartID());

Add any missing import statements.
Save the file.

Open DeserializeTest.java. The main method in this class reads from the console for

the ID of the customer shopping cart to deserialize.

Your code will go where the comment line is at the bottom of the file.
a.
b.

Open a FileInputStream with the cartFile string in a try-with-resources block.
Pass the file input stream instance to an Object InputStream to read the serialized
object instance from the file.

Read the cart object from the object input stream using the readobject method. Be
sure to cast the result to the appropriate object type.

You will need to catch both ClassNotFoundException and IOException, SO Use a
multi-catch expression.

Your code should look like this:

try (FileInputStream fis = new FileInputStream (cartFile);
ObjectInputStream in = new ObjectInputStream (fis)) {
cart = (ShoppingCart)in.readObject () ;
} catch (ClassNotFoundException | IOException e)
System.out.println ("Exception deserializing " + cartFile +
"e" ot oe)y;
System.exit (-1);

}

System.out.println ("Successfully deserialized shopping cart
with ID: " + cart.getCartID()) ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals

Chapter 13 - Page 12

f. Finally, print out the results of the cart (all of its contents) and the cart total cost
using the following code:

System.out.println ("Shopping cart contains: ");

List<Item> cartContents = cart.getlItems();

for (Item item : cartContents) {
System.out.println (item) ;

}

System.out.println ("Shopping cart total: " +
NumberFormat .getCurrencyInstance () . format (cart.getCartTotal ())) ;

g. Save the file.

7. Open the ShoppingCart.java. You will customize the serialization and deserialization of
this class by adding the two methods called during serialization/deserialization.

a. Add a method invoked during serialization that will add a timestamp (Date object
instance) to the end of the object stream.

b. Add a method with the signature:

private void writeObject (ObjectOutputStream oos) throws
IOException {

c. Make sure that the method serializes the current object fields first, and then write the
Date object instance:

oos.defaultWriteObject () ;
oos.writeObject (new Date()) ;

}

8. Add a method to the ShoppingCart class that is invoked during deserialization. This
method will recalculate the total cost of the shopping cart and print the timestamp that was
added to the stream.

a. Add a method with the signature:

private void readObject (ObjectInputStream ois) throws
IOException, ClassNotFoundException {

b. This method will deserialize the fields from the object stream, and recalculate the total
dollar value of the current cart contents:

ois.defaultReadObject () ;
if (cartTotal == 0 && (items.size() > 0)) {
for (Item item : items)
cartTotal += item.getCost () ;

}

c. Getthe Date object from the serialized stream and print the timestamp to the console.

Date date = (Date)ois.readObject () ;

System.out.println ("Restored Shopping Cart from: " +
DateFormat .getDateInstance () .format (date)) ;

}

d. Save the ShoppingCart.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 13

9. Test the application. This application has two main methods, so you will need to run each
main in turn.

a. Torunthe SerializeTest.java, right-click the class name and select Run File.
Enter a cart ID, such as 101.

b. The output will look like this:

Enter the ID of the cart file to create and serialize or g exit.
101

Shopping cart 101 contains 3 items

Shopping cart total: $58.39

Successfully serialized shopping cart with ID: 101

c. Torunthe DeserializeTest.java, right-click the class name and select Run File.
d. Enterthe ID 101 and the output will look like this:

Enter the ID of the cart file to deserialize or g exit.
101

Restored Shopping Cart from: Oct 26, 2011

Successfully deserialized shopping cart with ID: 101
Shopping cart contains:

Item ID: 101 Description: Duke Plastic Circular Flying Disc
Cost: 10.95

Item ID: 123 Description: Duke Soccer Pro Soccer ball Cost:
29.95

Item ID: 45 Description: Duke "The Edge" Tennis Balls - 12-Ball
Bag Cost: 17.49

Shopping cart total: $58.39

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 13: Java I/O Fundamentals
Chapter 13 - Page 14

