
Functional Programming

What is Functional Programming?

Functional programming is nothing but a style of programming, that promotes pure
functions. By pure function, it means a piece of code that take some input, performs
computations, and gives the desired output with no side-effects or tasks, like printing or
manipulating variables outside its scope. These functions also known as first-class
functions, i.e., it can simply be used as values, which can be passed as
arguments/parameters to another functions.

This type of programming was not supported in Java, until Java 8. Prior to Java 8, all codes
i.e., functions must be defined within a class. There is no way to write a simple function
without a class. However, this changed in Java 8, with the introduction of Lambda
Expressions.

Java 7 vs Java 8

Diagram above shows a typical java implementation that involves an interface and classes
that implements the interface. Next step is, to use the function declared in the interface,
one must create an instance of the class that implements the interface first, then call the
method(s) on that instance.

[Example in codes]

Java 8 introduced lambda expressions, that allows us to write a more concise and cleaner
codes. This is done by eliminating the need to create an implementation of the interface.
Instead of defining individual classes to provide different implementations of the interface,
we can simply assign the implementation to a variable instead.

[Example in codes]

Functional Interfaces and Lambda Expressions

A lambda expression is, essentially, an anonymous (unnamed) method. However, this
method is not executed on its own. Instead, it is used to implement a method defined by a
functional interface. Thus, a lambda expression results in a form of anonymous class.
Lambda expressions are also commonly referred to as closures.

A functional interface is an interface that contains one and only one abstract method.
Normally, this method specifies the intended purpose of the interface. Thus, a functional
interface typically represents a single action.

For example, the standard interface Runnable is a functional interface because it defines
only one method: run() . Therefore, run() defines the action of Runnable.

Lambda Expression Fundamentals

The new operator, sometimes referred to as the lambda operator or the arrow operator, is
−>.

 It divides a lambda expression into two parts.
 The left side specifies any parameters required by the lambda expression.
 On the right side is the lambda body, which specifies the actions of the lambda

expression.

Java defines two types of lambda bodies.

 Single expressions.
 Block of codes.

The simplest form of lambda expression is as shown below. It takes no parameter, and it
evaluates to a constant and then return the value (123.45).

() -> 123.45

Another example of lambda expressions.

double myMeth() { return 123.45; }

() -> Math.random() * 100

(n) -> (n % 2)==0

Like a named method, a lambda expression can specify as many parameters as needed.

Functional Interfaces

A functional interface is an interface that specifies only one abstract method. Example of a
functional interface.

interface MyNumber {
 double getValue();
}

In this case, the method getValue() is implicitly abstract, and it is the only method defined
by MyNumber. Thus, MyNumber is a functional interface, and its function is defined by
getValue().

In this case, the method getValue() is implicitly abstract, and it is the only method defined
by MyNumber. Thus, MyNumber is a functional interface, and its function is defined by
getValue().

// Create a reference to a MyNumber instance.
MyNumber myNum;

Next, a lambda expression is assigned to that interface reference:

// Use a lambda in an assignment context.
myNum = () -> 123.45;

When a lambda expression occurs in a target type context, an instance of a class is
automatically created that implements the functional interface, with the lambda expression
defining the behavior of the abstract method declared by the functional interface. When
that method is called through the target, the lambda expression is executed. Thus, a
lambda expression gives us a way to transform a code segment into an object.

In the preceding example, the lambda expression becomes the implementation for the
getValue() method. As a result, the following displays the value 123.45:

// Call getValue(), which is implemented by the previously assigned // lambda expression.
System.out.println("myNum.getValue());

Block Lambda Expressions

Lambdas that have block bodies are sometimes referred to as block lambdas.

//A block lambda that computes the factorial of an int value.
interface NumericFunc {
 int func(int n);
}

public class Test {
 public static void main(String args[]) {
 // This block lambda computes the factorial of an int value.
 NumericFunc factorial = (n) -> {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result = i * result;
 return result;
 };

 System.out .println("The factoral of 3 is " + factorial.func(3));
 System.out .println("The factoral of 5 is " + factorial.func(5));
 }
}

/*
 * The output is shown here:
 The factorial of 3 is 6
 The factorial of 5 is 120
*/

Generic Functional Interfaces

A lambda expression, itself, cannot specify type parameters. Thus, a lambda expression
cannot be generic. However, the functional interface associated with a lambda expression
can be generic.

 //Use a generic functional interface with lambda expressions.
//A generic functional interface.
interface SomeFunc<T> {
 T func(T t);
}

public class Test {
 public static void main(String args[]) {
 // Use a String-based version of SomeFunc.
 SomeFunc<String> reverse = (str) -> {
 String result = "";
 int i;
 for (i = str.length() - 1; i >= 0; i--)
 result += str.charAt(i);
 return result;
 };

 System.out .println("Lambda reversed is " + reverse.func("Lambda"));
 System.out .println("Expression reversed is " + reverse.func("Expression"));

 // Now, use an Integer-based version of SomeFunc.
 SomeFunc<Integer> factorial = (n) -> {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result = i * result;
 return result;
 };

 System.out .println("The factoral of 3 is " + factorial.func(3));
 System.out .println("The factoral of 5 is " + factorial.func(5));
 }
}

/*
 * The output is shown here:
 Lambda reversed is adbmaL
 Expression reversed is noisserpxE
 The factoral of 3 is 6
 The factoral of 5 is 120
 */

Lambda Expressions and Variable Capture

Variables defined by the enclosing scope of a lambda expression are accessible within the
lambda expression.

 A lambda expression can use an instance or static variable defined by its enclosing
class.

 A lambda expression also has access to this keyword.

However, when a lambda expression uses a local variable from its enclosing scope, a
special situation is created that is referred to as a variable capture. In this case, a lambda
expression may only use local variables that are effectively final.

 An effectively final variable is one whose value does not change after it is first
assigned.

 There is no need to explicitly declare such a variable as final, although doing so
would not be an error.

It is important to understand that a local variable of the enclosing scope cannot be
modified by the lambda expression. Doing so would remove its effectively final status, thus
rendering it illegal for capture.

//An example of capturing a local variable from the enclosing scope.
interface MyFunc {
 int func(int n);
}

public class Test {
 public static void main(String args[]) {
 // A local variable that can be captured.
 int num = 10;
 MyFunc myLambda = (n) -> {
 // This use of num is OK. It does not modify num.
 int v = num + n;
 // However, the following is illegal because it attempts
 // to modify the value of num.
 // num++;
 return v;
 };
 // The following line would also cause an error, because
 // it would remove the effectively final status from num.
 // num = 9;
 }
}

Throw an Exception from Within a Lambda Expression

A lambda expression can throw an exception. However, it if throws a checked exception,
then that exception must be compatible with the exception(s) listed in the throws clause of
the abstract method in the functional interface.

//Throw an exception from a lambda expression.
interface DoubleNumericArrayFunc {
 double func(double[] n) throws EmptyArrayException;
}

class EmptyArrayException extends Exception {
 EmptyArrayException() {
 super("Array Empty");
 }
}

public class Test {
 public static void main(String args[]) {
 double[] values = { 1.0, 2.0, 3.0, 4.0 };

 // This block lambda computes the average of an array of doubles.
 DoubleNumericArrayFunc average = (n) -> {
 double sum = 0;
 if (n.length == 0)
 throw new EmptyArrayException();
 for (int i = 0; i < n.length; i++)
 sum += n[i];
 return sum / n.length;
 };

 System.out .println("The average is " + average.func(values));

 // This causes an exception to be thrown.
 System.out .println("The average is " + average.func(new double[0]));
 }
}

Methods References

There is an important feature related to lambda expressions called the method reference. A
method reference provides a way to refer to a method without executing it.

Method References to static Methods

To create a static method reference, use this general syntax:

ClassName::methodName

//Demonstrate a method reference for a static method.
//A functional interface for string operations.
interface StringFunc {
 String func(String n);
}

//This class defines a static method called strReverse().
class MyStringOps {
//A static method that reverses a string.
 static String strReverse(String str) {
 String result = "";
 int i;
 for (i = str.length() - 1; i >= 0; i--)
 result += str.charAt(i);
 return result;
 }
}

//This class defines a static method called strReverse().
public class Test {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed any instance
 // of that interface, including a method reference.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[]) {
 String inStr = "Lambdas add power to Java";
 String outStr;

 // Here, a method reference to strReverse is passed to stringOp().
 outStr = stringOp(MyStringOps::strReverse, inStr);

 System.out .println("Original string: " + inStr);
 System.out .println("String reversed: " + outStr);
 }
}

/*
 * The output is shown here:
 Original string: Lambdas add power to Java

 String reversed: avaJ ot rewop dda sadbmaL
 */

Method References to Instance Methods

To pass a reference to an instance method on a specific object, use this basic syntax:

objRef::methodName

//Demonstrate a method reference to an instance method
//A functional interface for string operations.
interface StringFunc {
 String func(String n);
}

//Now, this class defines an instance method called strReverse().
class MyStringOps {
 String strReverse(String str) {
 String result = "";
 int i;
 for (i = str.length() - 1; i >= 0; i--)
 result += str.charAt(i);
 return result;
 }
}

public class Test {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed any instance
 // of that interface, including method references.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[]) {
 String inStr = "Lambdas add power to Java";
 String outStr;

 // Create a MyStringOps object.
 MyStringOps strOps = new MyStringOps();

 // Now, a method reference to the instance method strReverse
 // is passed to stringOp().
 outStr = stringOp(strOps::strReverse, inStr);

 System.out .println("Original string: " + inStr);
 System.out .println("String reversed: " + outStr);
 }
}

/*
 * The output is shown here: Original string:

 Lambdas add power to Java String
 reversed: avaJ ot rewop dda sadbmaL
 */

Method References with Generics

You can use method references with generic classes and/or generic methods. For
example, consider the following program:

//Demonstrate a method reference to a generic method
//declared inside a non-generic class.
//A functional interface that operates on an array
//and a value, and returns an int result.
interface MyFunc<T> {
 int func(T[] vals, T v);
}

//This class defines a method called countMatching() that
//returns the number of items in an array that are equal
//to a specified value. Notice that countMatching()
//is generic, but MyArrayOps is not.
class MyArrayOps {
 static <T> int countMatching(T[] vals, T v) {
 int count = 0;
 for (int i = 0; i < vals.length; i++)
 if (vals[i] == v)
 count++;
 return count;
 }
}

public class Test {

 // This method has the MyFunc functional interface as the
 // type of its first parameter. The other two parameters
 // receive an array and a value, both of type T.
 static <T> int myOp(MyFunc<T> f, T[] vals, T v) {
 return f.func(vals, v);
 }

 public static void main(String args[]) {
 Integer[] vals = { 1, 2, 3, 4, 2, 3, 4, 4, 5 };
 String[] strs = { "One", "Two", "Three", "Two" };
 int count;

 count = myOp(MyArrayOps::<Integer>countMatching, vals, 4);
 System.out .println("vals contains " + count + " 4s");

 count = myOp(MyArrayOps::<String>countMatching, strs, "Two");
 System.out .println("strs contains " + count + " Twos");
 }
}

/*
 * The output is shown here:

 vals contains 3 4s
 strs contains 2 Twos
 */

Constructor References

Similar to the way that you can create references to methods, you can create references to
constructors. Here is the general form of the syntax that you will use:

classname::new

This reference can be assigned to any functional interface reference that defines a method
compatible with the constructor.

//Demonstrate a Constructor reference.
//MyFunc is a functional interface whose method returns
//a MyClass reference.
interface MyFunc {
 MyClass func(int n);
}

class MyClass {
 private int val;

 // This constructor takes an argument.
 MyClass(int v) {
 val = v;
 }

 // This is the default constructor.
 MyClass() {
 val = 0;
 }

 // ...
 int getVal() {
 return val;
 };
}

public class Test {

 public static void main(String args[]) {
 // Create a reference to the MyClass constructor.
 // Because func() in MyFunc takes an argument, new
 // refers to the parameterized constructor in MyClass,
 // not the default constructor.
 MyFunc myClassCons = MyClass::new;

 // Create an instance of MyClass via that constructor reference.
 MyClass mc = myClassCons.func(100);

 // Use the instance of MyClass just created.

 System.out .println("val in mc is " + mc.getVal());
 }
}

/*
 * The output is shown here:
 val in mc is 100
 */

Predefined Functional Interfaces

In many cases, you won’t need to define your own functional interface because JDK 8
adds a new package called java.util.function that provides several predefined ones.

The following program shows the Function interface in action by using it to rework the
earlier example called BlockLambdaDemo that demonstrated block lambdas by
implementing a factorial example. That example created its own functional interface called
NumericFunc, but the built-in Function interface could have been used, as this version of
the program illustrates:

//Use the Function built-in functional interface.
//Import the Function interface.
import java.util.function.Function;

public class Test {

 public static void main(String args[]) {
 // This block lambda computes the factorial of an int value.
 // This time, Function is the functional interface.
 Function<Integer, Integer> factorial = (n) -> {
 int result = 1;
 for (int i = 1; i <= n; i++)
 result = i * result;
 return result;
 };

 System.out .println("The factoral of 3 is " + factorial.apply(3));
 System.out .println("The factoral of 5 is " + factorial.apply(5));
 }
}

[Examples in codes]

