Practices for Lesson 11:
Exceptions and Assertions

Chapter 11

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 1



Practices for Lesson 11: Overview

Practices Overview

In these practices, you will use try-catch statements, extend the Exception class, and use
the throw and throws keywords.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 2



Practice 11-1: Summary Level: Catching Exceptions

Overview
In this practice, you will create a new project and catch checked and unchecked exceptions.

Assumptions
You have reviewed the exception handling section of this lesson.

Summary

You will create a project that reads from a file. The file-reading code will be provided to you.
Your task is to add the appropriate exception-handling code.

Tasks
1. Perform the following tasks to create a new CatchingExceptions11-01 project.
a. Select File > New Project.
b. Select Java under Categories and Java Application under Projects.
c. Click Next.
d. Enter the following information in the “Name and Location” dialog box:
1) Project Name: CatchingExceptionsl11-01

2) Project Location: /home/oracle/labs/11-Exceptions
/practices/practicel/CatchingExceptionsl11-01.

3) Check Create Main Class: com.example .ExceptionMain
e. Click Finish.
2. Add the following line to the main method.

| System.out .println ("Reading from file:" + args[0]);

Note: A command-line argument will be used to specify the file that will be read. Currently
no arguments will be supplied, do not correct this oversight yet.

3. Run the project. You should see an error message similar to:

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: 0

at com.example.ExceptionMain.main (ExceptionMain.java:7)

Java Result: 1

4. Surround the print1n line of code you added with a try-catch statement.
= The catch clause should:
= Accept a parameter of type ArrayIndexOutOfBoundsException
= Printthe message: "No file specified, quitting!"

= Exit the application with an exit status of 1 by using the appropriate static method
within the System class

Note: Because the compiler did not force you to handle or declare the
ArrayIndexOutOfBoundsException, it is an unchecked exception. Typically, you
should not need to use a try-catch block to deal with an unchecked exception.
Checking the length of the args array is an alternate way to ensure that a
command-line argument was supplied.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 3



11.

Run the project. You should see an error message similar to:

No file specified, quitting!

Java Result: 1

Add a command-line argument to the project.
a. Right-click the catchingExceptions11-01 project and select Properties.
b. In the Project Properties dialog box, select the Run category.

c. Inthe Arguments field, enter a value of:
/home/oracle/labs/resources/DeclarationOf Independence. txt

d. Click OK.
Run the project. You should see a message similar to:

Reading from file:
/home/oracle/labs/resources/DeclarationOf Independence. txt

Warning: Running the project is not the same as running the file. The command-line
argument will only be passed to the main method if you run the project.

Add the following lines of code to the main method below your previously added lines:

BufferedReader b =
new BufferedReader (new FileReader (args[0])) ;
String s = null;
while((s = b.readLine()) != null) {
System.out .println(s) ;

}

Run the Fix Imports wizard by right-clicking in the source-code window.

. You should now see compiler errors in some of the lines that you just added. These lines

potentially generate checked exceptions. By manually building the project or holding your
cursor above the line with errors, you should see a message similar to:

unreported exception FileNotFoundException; must be caught or
declared to be thrown

Modify the project properties to support the t ry-with-resources statement.

a. Right-click the CatchingExceptions11-01 project and select Properties.
b. In the Project Properties dialog box, select the Sources category.

c. Inthe Source/Binary Format drop-down list, select JDK 8.

d. Click OK.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions

Chapter 11 - Page 4



12. Surround the file IO code provided in step 8 with a t ry-with-resources statement.

= The line that creates and initializes the BufferedrReader should be an automatically
closed resource.

= Add a catch clause for a FileNotFoundException. Within the catch clause:
= Print"File not found:" + args[0]
= Exit the application.

= Add a catch clause for an I0Exception. Within the catch clause:

= Print " Error reading file:" along with the message available in the
IOException object

= Exit the application.

try (BufferedReader b = new BufferedReader (new
FileReader (args[0]1));) {

String s = null;

while((s = b.readLine()) != null) {
System.out .println(s) ;

}

} catch(FileNotFoundException e) ({
System.out.println("File not found:" + args[0]);
System.exit (1) ;

} catch(IOException e) {

System.out .println ("Error reading file:" +
e.getMessage ()) ;

System.exit (1) ;

}

13. Run the project. You should see the content of the
/home/oracle/labs/resources/DeclarationOfIndependence. txt file displayed
in the output window.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 5



Practice 11-1: Detailed Level: Catching Exceptions

Overview
In this practice, you will create a new project and catch checked and unchecked exceptions.

Assumptions
You have reviewed the exception handling section of this lesson.

Summary

You will create a project that reads from a file. The file-reading code will be provided to you.
Your task is to add the appropriate exception-handling code.

Tasks
1. Perform the following steps to create a new CatchingExceptions11-01 project as the
main project.
a. Click File > New Project.
b. Select Java from Categories, and Java Application from Projects.
c. Click Next.
d. Enter the following information in the “Name and Location” dialog box:
1) Project Name: CatchingExceptions11-01

2) Project Location: /home/oracle/labs/11-Exceptions
/practices/practicel/CatchingExceptionsl11-01.

3) Check Create Main Class: com.example .ExceptionMain.
e. Click Finish.
2. Add the following line to the main method.

| System.out.println ("Reading from file:" + args[0]);

Note: A command-line argument will be used to specify the file that will be read. Currently
no arguments will be supplied; do not correct this oversight yet.

3. Run the project. You should see an error message similar to:

Exception in thread "main"
java.lang.ArrayIndexOutOfBoundsException: O

at com.example.ExceptionMain.main (ExceptionMain.java:7)

Java Result: 1

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 6



4. Surround the print1n line of code you added with a try-catch statement.
= The catch clause should:
= Accept a parameter of type ArrayIndexOutOfBoundsException
= Printthe message: "No file specified, quitting!"
= Exit the application with an exit status of 1 by using the System.exit (1) method

try {
System.out .println ("Reading from file:" + argsl[0]);

} catch (ArrayIndexOutOfBoundsException e) {
System.out .println("No file specified, quitting!");
System.exit (1) ;

}

Note: Since the compiler did not force you to handle or declare the
ArrayIndexOutOfBoundsException it is an unchecked exception. Typically you
should not need to use a try-catch block to deal with an unchecked exception.
Checking the length of the args array is an alternate way to ensure that a command
line argument was supplied.

5. Run the project. You should see an error message similar to:

No file specified, quitting!
Java Result: 1

6. Add a command-line argument to the project.
a. Right-click the CatchingExceptions11-01 project and click Properties.
b. In the Project Properties dialog box, select the Run category.

c. Inthe Arguments field, enter a value of:
/home/oracle/labs/resources/DeclarationOf Independence. txt

d. Click OK.
7. Run the project. You should see a message similar to:

Reading from
/home/oracle/labs/resources/DeclarationOf Independence.txt

Warning: Running the project is not the same as running the file. The command-line
argument will only be passed to the main method if you run the project.

8. Add the following lines of code to the main method below your previously added lines:

BufferedReader b =
new BufferedReader (new FileReader (args[0])) ;
String s = null;
while((s = b.readLine()) != null) {
System.out .println(s) ;

}

9. Run the Fix Imports wizard by right-clicking in the source-code window.

10. You should now see compiler errors in some of the lines that you just added. These lines
potentially generate checked exceptions. By manually building the project or holding your
cursor above the line with errors, you should see a message similar to:

unreported exception FileNotFoundException; must be caught or
declared to be thrown

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 7



11. Modify the project properties to support the try-with-resources statement.
a. Right-click the CatchingExceptions11-01 project and select Properties.
b. In the Project Properties dialog box, select the Sources category.
c. Inthe Source/Binary Format drop-down list, select JDK 8.
d. Click OK.
12. Surround the file 10 code provided in step 8 with a t ry-with-resources statement.

= The line that creates and initializes the Buf feredReader should be an automatically
closed resource.

= Add a catch clause for a FileNotFoundException. Within the catch clause:
= Print "File not found:" + argsl[0]
= Exit the application.

= Add a catch clause for an T0Exception. Within the catch clause:

* Print" Error reading file:" along with the message available in the
TIOException object

= Exit the application.

try (BufferedReader b =
new BufferedReader (new FileReader (args[0]));) {
String s = null;
while((s = b.readLine()) != null) {
System.out .println(s) ;

}

} catch(FileNotFoundException e)
System.out .println ("File not found:" + args[0]);
System.exit (1) ;

} catch(IOException e) {
System.out .println ("Error reading file:" + e.getMessage()) ;
System.exit (1) ;

}

13. Run the project. You should see the content of the
/home/oracle/labs/resources/DeclarationOfIndependence. txt file displayed
in the output window.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 8



Practice 11-2: Summary Level: Extending Exception and Throwing
Exception

Overview

In this practice, you will take an existing application and refactor the code to make use of a
custom exception class and throwing exception using throw and throws.

Assumptions
You have reviewed the exception handling section of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, deleting, and listing of Employee objects.

Tasks
1. Open the CustomExceptionsll-02Prac project as the main project.
a. Select File > Open Project.
b. Browseto /home/oracle/labs/11-Exceptions/practices/practice?
c. Select CustomExceptionsll-02Prac
d. and click Open Project.
2. Expand the project directories.
Create a InvalidOperationException class in the com.example package.

5. Complete the InvalidOperationException class. The
InvalidOperationException class should:

= Extend the Exception class

= Contain four public constructors with parameters matching those of the four public
constructors present in the Exception class. For each constructor, use super () to
invoke the parent class constructor with matching parameters.

6. Modify EmployeeImpl class.
a. Modify the methods: add, delete and findById

b. Declare that a InvalidOperationException may be produced during execution of
these method.

c. Within the catch block that you just created, generate a
InvalidOperationException and deliver it to the caller of the method. The
InvalidOperationException should contain a message String indicating what
went wrong and why.

12. Modify the EmployeeTest class to handle the InvalidOperationException objects
that are thrown by the EmployeeImpl.

a. Modify the main method:
Add the throws statement from the main method.

w

public static void main(String[] args) throws
InvalidOperationException

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 9



13. Run the project. Test all the operations by invoking the methods: add, delete and
findById.

For example: Attempt to delete an employee that does not exist. You should see a
message similar to:

Exception in thread "main"
com.example.InvalidOperationException: Error deleting employee,
no such employee 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 10



Practice 11-2: Detailed Level: Extending Exception and Throwing
Exception

Overview

In this practice, you will take an existing application and refactor the code to make use of a
custom exception class and throwing exception using throw and throws.

Assumptions
You have reviewed the exception handling section of this lesson.

Summary

You have been given a project that implements the logic for a human resources application. The
application allows for creating, retrieving, deleting, and listing of Employee objects.

Tasks

1. Open the CustomExceptionsl1l-02Prac project as the main project.
a. Select File > Open Project.
b. Browseto /home/oracle/labs/11-Exceptions/practices/practice?
c. Select CustomExceptionsl1-02Prac and Click Open Project.

2. Expand the project directories.

Create a InvalidOperationException class in the com.example package.

5. Complete the InvalidOperationException class. The
InvalidOperationException class should:

= Extend the Exception class.

= Create four public constructors with parameters matching those of the four public
constructors present in the Exception class. For each constructor, use super () to
invoke the parent class constructor with matching parameters.

w

package com.example;
public class InvalidOperationException extends Exception
public InvalidOperationException() {

super () ;

public InvalidOperationException (String message) {

super (message) ;

public InvalidOperationException (Throwable cause) {

super (cause) ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 11



public InvalidOperationException (String message, Throwable
cause)

super (message, cause) ;

7. Modify the add method within the EmployeeImpl class to:

Declare that a InvalidOperationException may be produced during execution of
this method.

Use an if statement to validate that an existing employee will not be overwritten by the
add. If one would, generate a InvalidOperationException and deliver it to the
caller of the method. The InvalidOperationException should contain a message
String indicating what went wrong and why.

Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

Within the catch block that you just created, generate a
InvalidOperationException and deliver it to the caller of the method. The
InvalidOperationException should contain a message String indicating what went
wrong and why.

public void add(Employee emp) throws InvalidOperationException

{

if (employeeArray [emp.getId ()] != null) {
throw new InvalidOperationException ("Error adding
employee , employee id already exists " + emp.getId());
}
try {
employeeArray [emp.getId ()] = emp;

} catch (ArrayIndexOutOfBoundsException e) {

throw new InvalidOperationException ("Error adding
employee , id must be less than " + employeeArray.length) ;

}

}

8. Modify the delete method within the EmployeeImpl class to:

Declare that a InvalidOperationException may be produced during execution of
this method.

Use an if statement to validate that an existing employee is being deleted. If one would
not be, generate a InvalidOperationException and deliver it to the caller of the
method. The InvalidOperationException should contain a message String
indicating what went wrong and why.

Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions

Chapter 11 - Page 12



= Within the catch block that you just created, generate a
InvalidOperationException and deliver it to the caller of the method. The
InvalidOperationException should contain a message String indicating what went
wrong and why.

public void delete(int id) throws InvalidOperationException
if (employeeArray[id] == null)

throw new InvalidOperationException ("Error deleting
employee, no such employee " + id);

}
try {
employeeArray[id] = null;
} catch (ArrayIndexOutOfBoundsException e) {

throw new InvalidOperationException ("Error deleting
employee, id must be less than " + employeeArray.length) ;

}

}

9. Modify the £indById method within the EmployeeImpl class to:

= Declare that a InvalidOperationException may be produced during execution of
this method.

= Use a try-catch block to catch the ArrayIndexOutOfBoundsException
unchecked exception that could possibly be generated.

= Within the catch block that you just created, generate a
InvalidOperationException and deliver it to the caller of the method. The

InvalidOperationException should contain a message String indicating what went
wrong and why.

public Employee findById(int id) throws
InvalidOperationException {

try {
return employeeArray[id];
} catch (ArrayIndexOutOfBoundsException e) {

throw new InvalidOperationException ("Error finding
employee ", e);

}

10. Modify the EmployeeTest class to handle the InvalidOperationException objects
that are thrown by the EmployeeImpl

b. Modify the main method:
Add the throws statement from the main method.

public static void main(String[] args) throws
InvalidOperationException

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 13



11. Run the project. Test all the operations by invoking the methods: add, delete and
findById.

For example: Attempt to delete an employee that does not exist. You should see a
message similar to:

Exception in thread "main"
com.example.InvalidOperationException: Error deleting employee,
no such employee 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 11: Exceptions and Assertions
Chapter 11 - Page 14



