Practices for Lesson 7:
Generics and Collections

Chapter 7

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 1



Practices for Lesson 7: Overview

Practices Overview

In these practices, use generics and collections to practice the concepts covered in the lecture.
For each practice, a NetBeans project is provided for you. Complete the project as indicated in
the instructions.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 2



Practice 7-1: Summary Level: Counting Part Numbers by Using
HashMaps

Overview
In this practice, use the HashMap collection to count a list of part numbers.

Assumptions
You have reviewed the collections section of this lesson.

Summary

You have been asked to create a simple program to count a list of part numbers that are of an
arbitrary length. Given the following mapping of part numbers to descriptions, count the number
of each part. Produce a report that shows the count of each part sorted by the part’s product
description. The part-number-to-description mapping is as follows:

Part Number Description
1S01 Blue Polo Shirt
1S02 Black Polo Shirt
1HO1 Red Ball Cap
1M02 Duke Mug

Once complete, your report should look like this:
=== Product Report ===

Name: Black Polo Shirt Count: 6
Name: Blue Polo Shirt Count: 7
Name: Duke Mug Count: 3
Name: Red Ball Cap Count: 5

Tasks

1. In NetBeans, open the GenericsHashMap07-01Prac project
a. Select File > Open Project.

b. Browse to /home/oracle/labs/07-
Generics Collections/practices/practicel

c. Select GenericsHashMap07-01Prac and click Open Project.
2. Expand the project directories.
3. Open ProductCounter.java inthe editor and make the following changes:
a. Forthe ProductCounter class, add two private map fields. The first map counts part
numbers. The order of the keys does not matter. The second map stores the mapping

of product description to part number. The keys should be sorted alphabetically by
description for the second map.

b. Create a one argument constructor that accepts a Map as a parameter. The map that
stores the description-to-part-number mapping should be passed in here.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 3



c. Create aprocessList () method to process a list of String part numbers. Use a
HashMap to store the current count based on the part number.

| public void processList (String[] list){ }

d. Create a printReport () method to print out the results.

| public void printReport (){ }

e. Add code to the main method to create the ProductCounter object and process the
same.
4. Run the ProductCounter . java class to ensure that your program produces the desired
output.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 4



Practice 7-1: Detailed Level: Counting Part Numbers by Using
HashMaps

Overview
In this practice, use the HashMap collection to count a list of part numbers.

Assumptions
You have reviewed the collections section of this lesson.

Summary

You have been asked to create a simple program to count a list of part numbers that are of an
arbitrary length. Given the following mapping of part numbers to descriptions, count the number
of each part. Produce a report that shows the count of each part sorted by the part’s product
description. The part number to description mapping is as follows:

Part Number Description
1S01 Blue Polo Shirt
1S02 Black Polo Shirt
1HO1 Red Ball Cap
1M02 Duke Mug

Once complete, your report should look like this:
=== Product Report ===

Name: Black Polo Shirt Count: 6
Name: Blue Polo Shirt Count: 7
Name: Duke Mug Count: 3
Name: Red Ball Cap Count: 5

Tasks
1. In NetBeans, open the GenericsHashMap07-01Prac project.
a. Select File > Open Project.

b. Browse to /home/oracle/labs/07-
Generics Collections/practices/practicel

c. Select GenericsHashMap07-01Prac and click Open Project.
2. Expand the project directories.
3. Open ProductCounter. java in the editor and make the following changes:

a. Add two private map fields- productCountMap and productNames. The first
map counts part numbers. The order of the keys does not matter. The second
map stores the mapping of product description to part number. The keys should
be sorted alphabetically by description for the second map.

private Map<String, Long> productCountMap = new HashMap<> () ;
private Map<String, String> productNames = new TreeMap<>() ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 5



b. Create a one argument constructor that accepts a Map as a parameter.

public ProductCounter (Map productNames) {

this.productNames = productNames;

c. Create a processList () method to process a list of St ring part numbers.
Use a HashMap to store the current count based on the part number.

public void processList (String[] list) {
long curVal = 0;

for (String itemNumber:list) {

if (productCountMap.containsKey (itemNumber)) {

curVal = productCountMap.get (itemNumber) ;

curVal++;

productCountMap.put (itemNumber, new
Long (curVal)) ;

} else {
productCountMap.put (itemNumber,new Long(1l)) ;
}
}
}
d. Create a printReport () method to print out the results.
public void printReport () {
System.out .println ("=== Product Report ===");
for (String key:productNames.keySet ()) {
System.out.print ("Name: " + key);
System.out .println("\t\tCount: " +
productCountMap.get (productNames .get (key) ) ) ;
}
}

4. Add the following code to the main method to create the ProductCounter object and
process the same.

ProductCounter pcl = new ProductCounter (productNames) ;

pcl.processList (parts) ;
pcl.printReport () ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.
Practices for Lesson 7: Generics and Collections

Chapter 7 - Page 6



THESE eKIT MATERIALS ARE FOR YOUR USE IN THIS CLASSROOM ONLY. COPYING eKIT MATERIALS FROM THIS COMPUTER IS STRICTLY PROHIBITED

5. Run the ProductCounter.java and verify the output.

rumn:

=== Froduct BReport =——

Name: Black Polo Shirt Count:- &
Name: Blue Polo Shirt Count:z 7
Name: Duke Mug Count:- 3
Name: BEed Bzall Cap Count:- 5
1

BUILD SUCCESSFUL (total time: 0 seconds

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 7

Oracle University and GUIDANCE VIEW SDN BHD use only



Practice 7-2: Summary Level: Implementing Stack using a Deque

Overview
In this practice, you use the Deque object to implement a Stack.

Assumptions
You have reviewed all the content in this lesson.

Summary

Use the Deque data structure to implement a stack to support push, pop and peek
operations.

Tasks
1. In NetBeans, open the Stack07-02Prac project
a. Select File > Open Project.

b. Browseto /home/oracle/labs/07-
Generics Collections/practices/practice2

c. Select stack07-02Prac and click Open Project.
2. Expand the project directories.
3. Open IntegerStack. java in the editor and make the following changes:
a. Implement the push () method to add an Integer to the stack:
Use the method addFirst (element) from the Deque APL.
b. Implement the pop () method that deletes an Integer from the top of the stack:

Use the removeFirst () method from the Deque API, also check for stackunderflow
condition before deleting the element by using i sEmpty () method from the Deque
API.

c. Implement peek () method which returns the element at the top of the stack:
Use the method peekFirst () from the Deque API.
d. Override the toString () method.
4. Add a main method the class and perform the following steps:
a. Create an instance of the Stack Class:

IntegerStack stack = new IntegerStack();

b. Perform various operations on the stack by invoking various methods: push () , pop ()
and peek() .
5. Runthe IntegerStack.java class to ensure that your program produces the desired
output.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 8



Practice 7-2: Detailed Level: Implementing Stack Using a Deque

Overview
In this practice, you use the Deque object to implement a Stack.

Assumptions
You have reviewed all the content in this lesson.

Summary

Use the Deque data structure to implement a stack to support push, pop and peek
operations.

Tasks

1. In NetBeans, open the Stack07-02Prac project.
a. Select File > Open Project.

b. Browseto /home/oracle/labs/07-
Generics Collections/practices/practice2

c. Select stack07-02Prac and click Open Project.

2. Expand the project directories.
3. Open IntegerStack.java in the editor and make the following changes:
4. Implement the push () method to add an Integer to the stack:

public void push(Integer element) ({
data.addFirst (element) ;

}

5. Implement the pop () method that deletes an Integer from the top of the stack:

public Integer pop() ({
if (data.isEmpty())

{

System.out .print ("Stack is empty");

return data.removeFirst () ;

}

6. Implement the peek method():

public Integer peek() {
return data.peekFirst () ;

}

7. Override the toString () method:

public String toString() {
return data.toString() ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections
Chapter 7 - Page 9



8. Add amain method the class.
a. Create an instance of the Stack Class:

IntegerStack stack = new IntegerStack();

b. Perform various operations on the stack by invoking various methods:
push () ,pop () and peek() .

stack) ;

stack) ;

stack) ;

public static void main(String[] args) {

IntegerStack stack = new IntegerStack() ;
for (int i = 0; i < 5; i++) {
stack.push (i) ;

}

System.out .println ("After pushing 5 elements: " +
int element = stack.popl();

System.out .println ("Popped element = " + element) ;
System.out .println ("After popping 1 element : " +

int top = stack.peek() ;
System.out .println ("Peeked element = " + top);
System.out .println ("After peeking 1 element : " +

9. Runthe IntegerStack.java class to ensure that your program produces the desired

output.

Popped element

After pushing 5 elements: [4, 3, 2, 1, 0]

Lfter popping 1 element - [3, 2, 1, 0]
Peeked element = 3

Lfter peeking 1 element - [3, 2, 1, 0]
BUILD SUCCESSFUL (total time: 2 seconds)

=4

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 7: Generics and Collections

Chapter 7 - Page 10




