Using I/O

Java’s I/O is Built upon Streams

e Java programs perform I/O through streams.

e Astream is an abstraction that either produces or consumes information.

e Astream is linked to a physical device by the Java I/O system.

e This means that an input stream can abstract many kinds of input: from a disk file, a
keyboard, or a network socket.

e Likewise, an output stream may refer to the console, a disk file, or a network
connection.

e Java implements streams within class hierarchies defined in the java.io package.

Byte Streams and Character Streams

e Java defines two types of streams: byte and character.

e Byte streams provide a convenient means for handling input and output of bytes.

e Byte streams are used, for example, when reading or writing binary data.

e Character streams provide a convenient means for handling input and output of
characters.

e They use Unicode and, therefore, can be internationalized.

e Also, in some cases, character streams are more efficient than byte streams.

The Byte Stream Classes

Byte streams are defined by using two class hierarchies.
At the top are two abstract classes: InputStream and OutputStream.
Each of these abstract classes has several concrete subclasses that handle the

differences among various devices, such as disk files, network connections, and even

memory buffers.

The byte stream classes in java.io are shown in the next table.

The abstract classes InputStream and OutputStream define several key methods that

the other stream classes implement.

Two of the most important are read() and write(), which, respectively, read and write

bytes of data.

Each has a form that is abstract and must be overridden by derived stream classes.

Stream Class

Meaning

BufferedInputStream

Buffered input stream

BufferedOutputStream

Buffered output stream

ByteArrayInputStream

Input stream that reads from a byte array

ByteArrayOutputStream

Output stream that writes to a byte array

DatalnputStream

An input stream that contains methods for reading the Java
standard data types

DataOutputStreain

An output stream that contains methods for writing the Java
standard data types

FileInputStream

Input stream that reads from a file

FileOutputStream

Output stream that writes to a file

FilterInputStream

Implements InputStream

FilterOutputStream

Implements OutputStream

InputStream

Abstract class that describes stream input

ObjectlnputStream

Input stream for objects

ObjectOutputStream

Output stream for objects

OutputStream

Abstract class that describes stream output

PipedInputStream

Input pipe

PipedOutputStream

Output pipe

PrintStream

Output stream that contains print() and printin()

PushbackInputStream

Input stream that supports one-byte “unget.” which returns a
byte to the input stream

SequencelnputStream

Input stream that is a combination of two or more input
streams that will be read sequentially, one after the other

The Character Stream Classes

Character streams are defined by using two class hierarchies.
At the top are two abstract classes: Reader and Writer.

Stream Class

Meaning

BufferedReader

Buffered input character stream

BufferedWriter

Buffered output character stream

CharArrayReader

Input stream that reads from a character array

CharArrayWriter

Output stream that writes to a character array

FileReader Input stream that reads from a file
FileWriter Output stream that writes to a file
FilterReader Filtered reader

FilterWriter

Filtered writer

InputStreamReader

Input stream that translates bytes to characters

LineNumberReader

Input stream that counts lines

OutputStreamWriter

Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input
stream

Reader Abstract class that describes character stream input

StringReader

Input stream that reads from a string

StringWriter

Output stream that writes to a string

Writer

Abstract class that describes character stream output

The Predefined Streams

All Java programs automatically import the java.lang package.

This package defines a class called System, which encapsulates several aspects of the
run-time environment.

System also contains three predefined stream variables: in, out, and err.
These fields are declared as public, static, and final within System.

This means that they can be used by any other part of your program and without

reference to a specific System object.

Using the Byte Streams

Let's explore FilelnputStream and FileOutputStream by examining an example program named
CopyBytes, which uses byte streams to copy xanadu.txt, one byte at a time.

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;

public class CopyBytes {
public static void main(String[] args) throws IOException {

FileInputStream in = null;
FileOutputStream out = null;

try {
in = new FileInputStream("xanadu.txt");

out = new FileOutputStream("outagain.txt");

int c;
while ((c = in.read()) != -1) {
out.write(c);
¥
} finally {

if (in != null) {
in.close();

}

if (out != null) {
out.close();

¥

CopyBytes spends most of its time in a simple loop that reads the input stream and writes the
output stream, one byte at a time.

Reading and Writing Files

Two of the most often-used stream classes are FilelnputStream and FileOutputStream, which
create byte streams linked to files.

import java.io.*;

class ShowFile {
public static void main(String args[]) {
int i;
FileInputStream fin;
// First, confirm that a filename has been specified.
if (args.length != 1) {
System.out.println("Usage: ShowFile filename");

return;
}
// Attempt to open the file.
try {

fin = new FileInputStream(args[0]);

} catch (FileNotFoundException e) {
System.out.println("Cannot Open File");
return;

}

// At this point, the file is open and can be read.

// The following reads characters until EOF is encountered.

try {
do {
i = fin.read();
if (i !'= -1)
System.out.print((char) i);
} while (i != -1);

} catch (IOException e) {
System.out.println("Error Reading File");

}
// Close the file.
try {

fin.close();
} catch (IOException e) {
System.out.println("Error Closing File");

}

Automatically Closing a File

e JDK 7 added a new feature that offers another way to manage resources, such as file
streams, by automating the closing process.

e This feature, sometimes referred to as automatic resource management, or ARM for
short, is based on an expanded version of the try statement.

e The principal advantage of automatic resource management is that it prevents
situations in which a file (or other resource) is inadvertently not released after it is no
longer needed.

try (resource-specification) {
// use the resource

}

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;

public class CopyBytes {
public static void main(String[] args) {
// The following code uses a try-with-resources statement to open
// a file and then automatically close it when the try block is
left.
try (FileInputStream fin = new FileInputStream(args[@])) {
do {
i = fin.read();
if (i != -1)
System.out.print((char) i);
} while (i != -1);
} catch (FileNotFoundException e) {
System.out.println("File Not Found.");
} catch (IOException e) {
System.out.println("An I/0 Error Occurred");
}

Random-Access Files

Random access files permit nonsequential, or random, access to a file's contents. To access a
file randomly, you open the file, seek a particular location, and read from or write to that file.

This functionality is possible with the SeekableByteChannel interface. The SeekableByteChannel
interface extends channel I/O with the notion of a current position. Methods enable you to set
or query the position, and you can then read the data from, or write the data to, that location.
The API consists of a few, easy to use, methods:

e position — Returns the channel's current position

e position(long) — Sets the channel's position

e read(ByteBuffer) — Reads bytes into the buffer from the channel

o write(ByteBuffer) — Writes bytes from the buffer to the channel

e truncate(long) — Truncates the file (or other entity) connected to the channel

The following code snippet opens a file for both reading and writing by using one of the
newByteChannel methods. The SeekableByteChannel that is returned is cast to a FileChannel.
Then, 12 bytes are read from the beginning of the file, and the string "l was here!” is written at
that location. The current position in the file is moved to the end, and the 12 bytes from the
beginning are appended. Finally, the string, "l was here!” is appended, and the channel on the
file is closed.

String s = "I was here!\n";
byte data[] = s.getBytes();
ByteBuffer out = ByteBuffer.wrap(data);

ByteBuffer copy = ByteBuffer.allocate(12);

try (FileChannel fc = (FileChannel.open(file, READ, WRITE))) {
// Read the first 12
// bytes of the file.
int nread;
do {

nread = fc.read(copy);
} while (nread != -1 && copy.hasRemaining());

// Write "I was here!" at the beginning of the file.
fc.position(0);
while (out.hasRemaining())
fc.write(out);
out.rewind();

// Move to the end of the file. Copy the first 12 bytes to

// the end of the file. Then write "I was here!" again.

long length = fc.size();

fc.position(length - 1);

copy.flip();

while (copy.hasRemaining())
fc.write(copy);

while (out.hasRemaining())
fc.write(out);

} catch (IOException x) {
System.out.println("I/0 Exception:

+ X);

}

Using Java's Character-Based Streams

The following Java program reads data from a particular file using FileReader and writes it to
another, using FileWriter.

// Creating FileReader object

File file = new File("D:/myFile.txt");

FileReader reader;

try {
reader = new FileReader(file);
char chars[] = new char[(int) file.length()];
// Reading data from the file
reader.read(chars);
// Writing data to another file
File out = new File("D:/CopyOfmyFile.txt");
FileWriter writer = new FileWriter(out);
// Writing data to the file
writer.write(chars);
writer.flush();

} catch (FileNotFoundException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} finally {
System.out.println("Data successfully written in the specified file");

}

Using Java’s Type Wrappers to Convert Numeric to Strings

Sometimes, you need to convert a number to a string because you need to operate on the
value in its string form. All classes inherit a method called toString from the Object class. The
type-wrapper classes override this method to provide a reasonable string representation of the
value held by the number object.

The following program, ToStringDemo (in a java source file), uses the toString method to
convert a number to a string. Next, the program uses some string methods to compute the
number of digits before and after the decimal point:

double d
String s

858.48;
Double.toString(d);

int dot = s.indexOf('.");

System.out.println(s.substring(@, dot).length() + " digits before decimal
point.");

System.out.println(s.substring(dot + 1).length() + " digits after decimal
point.");

The toString method called by this program is the class method. Each of the number classes
has an instance method called toString, which you call on an instance of that type.

You don't have to explicitly call the toString method to display numbers with the
System.out.println method or when concatenating numeric values to a string. The Java
platform handles the conversion by calling toString implicitly.

