Packages and Interfaces

Packages

e Packages are containers for classes.
e Packages are used to keep the class name space compartmentalized.
e Packages are stored in a hierarchical manner and are explicitly imported into new class
definitions.
e The package is both a naming and a visibility control mechanism.
o Define classes inside a package that are not accessible by code outside that
package.
o Define class members that are exposed only to other members of the same
package.
e The package statement syntax.

package <top pkg name>[.<sub_ pkg name>];

Packages and Member Access

e Packages act as containers for classes and other subordinate packages.
e Classes act as containers for data and code.

e Java addresses four categories of visibility for class members.
Subclasses in the same package.

Non-subclasses in the same package.

Subclasses in different packages.

Classes that are neither in the same package nor subclasses.

O O O O

Understanding Protected Members

Private Default Protected Public

Same class Yes Yes Yes Yes
Same package No Yes Yes Yes
subclass

Same package No Yes Yes Yes
non-subclass

Different No No Yes Yes
package

subclass

Different No No No Yes
package non-

subclass




Importing Packages

e Java includes the import statement to bring certain classes, or entire packages, into
visibility.

e InaJava source file, import statement occur immediately after the package statement,
and before any class definitions.

e The import statement syntax.

import pkg1 [.pkgZ2].(classname | *);
Java's Class Library Is Contained in Packages

e All of the standard Java classes included with Java are stored in a package called java.

e The basic language functions are stored in a package inside of the java package called
java.lang.

e The java.lang package is imported implicitly by the compiler for all programs.

Interfaces

e Using the interface keyword, Java allows you to fully abstract a class’s interface from its
implementation.

e Interfaces are syntactically like classes, but they lack instance variables, and as a rule,
their methods are declared without any body.

e Onceitis defined, any number of classes can implement an interface.

e Also, one class can implement any number of interfaces.

Defining an Interface

General syntax of an interface.

access interface name {

return-type method-namel (parameter-list);
return-type method-nameZ2 (parameter-list);
type final-varnamel = value;

type final-varname2 = value;

[/

return-type method-nameN(parameter-list);
type final-varnameN = value;



Implementing Interfaces

e Toimplement an interface, include the implements clause in a class definition, and then
create the methods required by the interface.

class classname [extends superclass] [implements interface [,interface...]] {
// class-body

}

e [f aclass implements more than one interface, the interfaces are separated with a
comma.

Using Interfaces References

e You can declare variables as object references that use an interface rather than a class
type.

e Any instance of any class that implements the declared interface can be referred to by
such a variable.

e When you call a method through one of these references, the correct version will be
called based on the actual instance of the interface being referred to.
e The method to be executed is looked up dynamically at run time.

Variables in Interfaces

e Variables declared in an interface are constants that can be shared by muiltiple classes.

interface SharedConstants {

int NO = ©;
int YES = 1;
int MAYBE = 2;
int LATER = 3;

3
int SOON = 4;
int NEVER = 5;

Interfaces Can Be Extended

e One interface can inherit another by use of the keyword extends.

e The syntax is the same as for inheriting classes.

e When a class implements an interface that inherits another interface, it must provide
implementations for all methods required by the interface inheritance chain.



interface FirstInterface {
public void first();
}

interface SecondInterface extends FirstInterface {
public void second();
}

class MyClass implements SecondInterface {

@Override
public void first() {

System.out.println("This is the first method");
}

@Override
public void second() {
System.out.println("This is the second method");

}

Default Interface Methods

Since JDK 8, Java added a new capability to interface called the default method.

A default method lets you define a default implementation for an interface method.
A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking existing code.

The declaration is preceded by the keyword default.

public interface MyIF {
// This is a "normal" interface method declaration.
// It does NOT define a default implementation.
int getNumber();

// This is a default method. Notice that it provides
// a default implementation.
default String getString() {
return "Default String";
}

Use static Methods in an Interface

e JDK 8 added another new capability to interface; the ability to define one or more static
methods.

e Like static methods in a class, a static method defined by an interface can be called
independently of any object.

e Astatic method is called by prefixing the interface name.



Private Interface Methods

e Java 9 onward, you are allowed to include private methods in interfaces.
e Using private methods, now encapsulation is possible in interfaces as well.
e These private methods will improve code re-usability inside interfaces
e For example, if two default methods needed to share code, a private interface method
would allow them to do so, but without exposing that private method to its
implementing classes.
e Using private methods in interfaces have four rules:
o Private interface method cannot be abstract.
o Private method can be used only inside interface.
o Private static method can be used inside other static and non-static interface
methods.
o Private non-static methods cannot be used inside private static methods.

interface MyInterface {
default void first () {
System.out.println();
second();

}

private void second() {
System.out.println();
}



