MORE DATA TYPES AND
OPERATORS

More Data Types and Operators

Arrays

e Anarray is a group of like-typed variables that are referred to by a common name.

e Array of any type (primitive or class) can be created and may have one or more
dimensions.

e A specific elementin an array is accessed by its index.

e Arrays offer a convenient means of grouping related information.

e InJava, an array is an object.

o Array is a fixed size list of values.

o When declaring an array, the size must be supplied.

One-Dimensional Arrays

o A one-dimensional array is, essentially, a list of like-typed variables.
e Syntax to declare a one-dimensional array.

type array-var = new type [size];
int month days = new int[12];
e To access and display array element, use the index.

System.out.println (month days[3]);

Multidimensional Arrays

e |In Java, multidimensional arrays are actually arrays of arrays.
e To declare a multidimensional array variable, specify each additional index using
another set of square brackets.

int twoD[][] = new int[4][5];

o This allocates a 4 by 5 array and assigns it to twoD.
e Internally, this matrix is implemented as an array of arrays of int.

Right index determines column

T T

[o]lo] | [e](x]| [e] (=] | [e] (=] | [e] (4]

Leit index EVICIIESIEN] BV ETENIEA}RYEY

determines
TOW.

(z]00] | 210 | (20 [2]| 2] (]| 2] 4]

(310e] | (310 | (B1020| (1|3 4]

Given:inttwoD [] [] = new int[4] [5];

Jagged Array

e When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension.
e You can allocate the remaining dimensions separately.

int twoD[][] = new int[4][];
twoD[0] = new int[1l];
twoD[1l] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

The array created by this program looks like this:

Lo][o]
(o] |3
(2][0] {[2][x]|[2][2]
[3][o] | [3][x] | [a][2]|[3][3]

Alternative Array Declaration Syntax

e Thereis a second form that may be used to declare an array:
type[] var-name;

e Here, the square brackets follow the type specifier, and not the name of the array
variable.
e For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int([3];

e This alternative declaration form offers convenience when declaring several arrays at
the same time.

int[] nums, nums2, nums3; // create three arrays

int nums[], nums2[], nums3[]; // create three arrays

Assigning Array References

o As with other objects, when you assign one array reference variable to another, you are
simply changing what object that variable refers to.

e You are not causing a copy of the array to be made, nor are you causing the contents
of one array to be copied to the other.

Using the length Member

All array indices in Java begin at O.
The number of elements in an array is stored as part of the array object in the length
attribute.

If an out-of-bounds runtime access occurs, then a runtime exception is thrown.
int[] arr = new int[5];

int arrayLength = arr.length;

Array Length in Java
Array Length = Array’s Last Index + 1

1 2 3 4 5 6 7 8
0 1 2 3 4 5 6 7

Array’s lastindex=7
Arraylength=7 +1=8

The For-Each Style for Loop

For-each is another array traversing technique like for loop, while loop, do-while loop
introduced in Javab.

It starts with the keyword for like a normal for-loop.

Instead of declaring and initializing a loop counter variable, you declare a variable that is
the same type as the base type of the array, followed by a colon, which is then followed
by the array name.

In the loop body, you can use the loop variable you created rather than using an
indexed array element.

It's commonly used to iterate over an array or a Collections class (eg, ArrayList)

int[] numbers = {1, 2, 3, 4, 5};
int total = 9;

for(int num : numbers) {
total += num;

}
System.out.println("Total is " + total);

Strings

o Java's string type, called String, is not a primitive type.

e tisin facta class.

e When you declare a variable of type String, you basically creating an object.

e String class is immutable.

e \When you create a String object, you are creating a string that cannot be changed. That
is, once a String object has been created, you cannot change the characters that
comprise that string.

e Fach time you need an altered version of an existing string, a new String object is
created that contains the modifications. The original string is left unchanged.

String Declarations

There are two ways to declare String variables.

// literals

String name = "John Smith";

// constructor

String email = new String("john@example.com");

String Length

The length of a string is the number of characters that it contains. To obtain this value, call the
length() method.

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);
System.out.println(s.length());

String Concatenation

e In general, Java does not allow operators to be applied to String objects.
e The one exception to this rule is the + operator, which concatenates two strings,
producing a String object as the result.

String age = "9";
String s = "He is " + age + " years o0ld.";
System.out.println(s);

Using Command-Line Arguments

e Sometimes you will want to pass information into a program when you run it.

e Thisis accomplished by passing command-line arguments to main().

e To access the command-line arguments inside a Java program is quite easy - they are
stored as strings in a String array passed to the args parameter of main().

e The first command-line argument is stored at args|0], the second at argsl[l1], and so on.

/>I<
* access program arguments and then display to console
*/
System.out.println(args[0]); // hello
System.out.println(args[1]); // 1
System.out.println(args[2]); // 2
System.out.println(args[3]); // 3

for(String s : args) {
System.out.println(s);
}

Using Type Inference with Local Variables

e Java 10 introduced a new shiny language feature called local variable type inference.
e Until Java 9, we had to mention the type of the local variable explicitly and ensure it
was compatible with the initializer used to initialize it:

String message = '"Good bye, Java 9";

e In Java 10, this is how we could declare a local variable:
message = '""Hello, Java 10'";

o Note that this feature is available only for local variables with the initializer.

e |t cannot be used for member variables, method parameters, return types, etc — the
initializer is required as without which compiler won't be able to infer the type.

e This enhancement helps in reducing the boilerplate code; for example:

Map<Integer, String> map = HashMap<>();
e This can now be rewritten as:
idToNameMap = HashMap<Integer, String>();

e Another thing to note is that var is not a keyword — this ensures backward compatibility
for programs using var say, as a function or variable name.

e varis areserved type name, just like int.

e Finally, note that there is no runtime overhead in using var nor does it make Java a
dynamically typed language.

e The type of the variable is still inferred at compile time and cannot be changed later.

