
JAVA SE
PROGRAMMING

GOOD MORNING AND WELCOME!

We will start the class soon… while waiting please visit the link for all course-related resources.

http://asmaliza.com/java-se-programming/

Thank you!

Trainer Emma

HELLO EVERYONE!
My name is Asmaliza Ahzan. You can call me Emma 

My email address is asmaliza@iverson.com.my

INTRODUCTION

• Name

• Job Role/Designation

• Programming Experiences (if any)

• Expectations from this course

LOGISTICS

• Sessions: 9am-5pm

• 10-15mins breaks

• 1 hour lunch break

• 5 days

AGENDAS

• Java Fundamentals

• Introducing Data Types and Operators

• Program Control Statements

• More Data Types and Operators

• A Close Look at Methods and Classes

• Inheritance

• Packages and Interfaces

• Exception Handling

• Using I/O

• Multithreaded Programming

• Enumerations, Autoboxing, Static Imports
and Annotations

• Generics

• Lambda Expressions and Method
References

JAVA FUNDAMENTAL

THE HISTORY AND PHILOSOPHY OF JAVA

• Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991.

• It took 18 months to develop the first working version.

• This language was initially called “Oak,” but was renamed “Java” in 1995.

• Based on C++ programming language.

• Platform independent.

OBJECT-ORIENTED PROGRAMMING

• OOP is at the core of Java.

• The 3 OOP principles

• Encapsulation – the mechanism that binds together code and the data it manipulates and keeps both
safe from outside interference and misuse.

• Inheritance – the process by which one object acquires the properties of another object.

• Polymorphism – a feature that allows one interface to be used for a general class of actions.

JAVA DEVELOPMENT KIT (JDK)

The Java Development Kit is an implementation of either one of the Java Platform, Standard
Edition, Java Platform, Enterprise Edition, or Java Platform, Micro Edition platforms released by
Oracle Corporation in the form of a binary product aimed at Java developers on Solaris, Linux,
macOS or Windows.

JAVA RUNTIME ENVIRONMENT (JRE)

The Java Runtime Environment, or JRE, is a software layer that runs on top of a computer’s
operating system software and provides the class libraries and other resources that a specific
Java program needs to run.

JAVA VIRTUAL MACHINE (JVM)

A Java virtual machine (JVM) is a virtual machine that enables a computer to run Java programs
as well as programs written in other languages that are also compiled to Java bytecode. The JVM
is detailed by a specification that formally describes what is required in a JVM implementation.

A FIRST SIMPLE PROGRAM
ACTIVITY

JAVA BASICS

• Java programs are enclosed in a pair of curly brackets that indicates a block of codes.

• Every statement in Java must ends with a semicolon.

• Java is case-sensitive.

• Whitespace in Java program is ignored.

IDENTIFIERS

Identifiers are used to name things, such as classes, variables, and methods.

• Must begin with a letter, underscore, or a dollar sign.

• Cannot start with a number.

• A single word.

• Case sensitive.

• Cannot use Java keywords.

COMMENTS

• // for single-line comments.

• /* */ for multiple-lines comments.

• /** */ for Javadoc comments.

THE JAVA KEYWORDS
abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

THE JAVA CLASS LIBRARIES

• Full list of Java class libraries can be found at the official page
https://docs.oracle.com/en/java/javase/11/docs/api/

ACTIVITY
EXERCISE 1

INTRODUCING DATA TYPES AND
OPERATORS

WHY DATA TYPES ARE IMPORTANT

• Java is a strongly typed language.

• Every variable, expression has a type, and every type is strictly defined.

• All assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility.

• No automatic coercions or conversions of conflicting types as in some languages.

• The Java compiler checks all expressions and parameters to ensure that the types are
compatible.

• Any type mismatches are errors that must be corrected before the compiler will finish compiling
the class.

JAVA’S PRIMITIVE TYPES

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.

Group Description

Integers This group includes byte, short, int, and long, which are for whole-valued

signed numbers.

Float-point This group includes float and double, which represent

numbers with fractional precision.

Characters This group includes char, which represents symbols in a character set,

like letters and numbers.

Boolean This group includes boolean, which is a special type for representing

true/false values.

INTEGERS

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and
negative values. Java does not support unsigned, positive-only integers.

Name Width Range

long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

FLOATING POINTS

Floating-point numbers, also known as real numbers, are used when evaluating expressions that
require fractional precision. For example, calculations such as square root, or transcendentals
such as sine and cosine, result in a value whose precision requires a floating point type.

Name Width Range

double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

CHARACTERS

In Java, the data type used to store characters is char. At the time of Java's creation, Unicode
required 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are
no negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255.

BOOLEAN

Java has a primitive type, called boolean, for logical values. It can have only one of two possible
values, true or false.

VARIABLES

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a
scope, which defines their visibility, and a lifetime.

DECLARING A VARIABLE

In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] …];

THE SCOPE AND LIFETIME OF VARIABLES

• A block defines a scope. Thus, each time you start a new block, you are creating a new scope.

• A scope determines what objects are visible to other parts of your program.

• It also determines the lifetime of those objects.

OPERATORS

Java provides a rich operator environment. Most of its operators can be divided into the following
four groups: arithmetic, bitwise, relational, and logical.

ARITHMETIC OPERATORS
Operator Result

+ Addition (also unary plus)

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

– – Decrement

+= Addition assignment

– = Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

BITWISE OPERATORS
Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

RELATIONAL OPERATORS

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

BOOLEAN LOGICAL OPERATORS

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

BOOLEAN LOGICAL OPERATIONS

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

THE ASSIGNMENT OPERATOR

• The assignment operator is the single equal sign, =.

• The assignment operator works in Java much as it does in any other computer language.

• It has this general form:

var = expression;

OPERATOR PRECEDENCE
Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

USING PARENTHESES

Parentheses raise the precedence of the operations that are inside them. This is often necessary
to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression can
be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you will need
to parenthesize the expression like this:

(a >> b) + 3

TYPE CONVERSION IN ASSIGNMENTS

• If the two types are compatible, then Java will perform the conversion automatically. For
example, it is always possible to assign an int value to a long variable.

• However, not all types are compatible, and thus, not all type conversions are implicitly allowed.
For instance, there is no automatic conversion defined from double to byte.

• Fortunately, it is still possible to obtain a conversion between incompatible types.

• To do so, you must use a cast, which performs an explicit conversion between incompatible
types.

JAVA’S AUTOMATIC CONVERSIONS

• When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

• The two types are compatible.

• The destination type is larger than the source type.

• When these two conditions are met, a widening conversion takes place. For example, the int
type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

• For widening conversions, the numeric types, including integer and floating-point types, are
compatible with each other. However, there are no automatic conversions from the numeric
types to char or boolean. Also, char and boolean are not compatible with each other.

CASTING INCOMPATIBLE TYPES

To create a conversion between two incompatible types, you must use a cast. A cast is simply an
explicit type conversion. It has this general form:

(target-type) value

EXPRESSIONS

An expression is a construct made up of variables, operators, and method invocations, which are
constructed according to the syntax of the language, that evaluates to a single value.

int cadence = 0;

anArray[0] = 100;

System.out.println("Element 1 at index 0: " + anArray[0]);

int result = 1 + 2; // result is now 3

if (value1 == value2)

System.out.println("value1 == value2");

ACTIVITY
EXERCISE 2 AND 3

PROGRAM CONTROL STATEMENTS

DECISION CONSTRUCTS

• Java supports two selection statements: if and switch.

• These statements allow you to control the flow of your program’s execution based upon
conditions known only during run time.

THE IF-ELSE STATEMENT

The if statement is Java’s conditional branch statement. It can be used to route program execution
through two different paths. Here is the general form of the if statement:

if (condition) statement1;

else statement2;

Here, each statement may be a single statement, or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The else
clause is optional.

NESTED IFS

• A nested if is an if statement that is the target of another if or else.

• Nested ifs are very common in programming.

• When you nest ifs, the main thing to remember is that an else statement always refers to the
nearest if statement that is within the same block as the else and that is not already associated
with an else.

THE IF-ELSE-IF LADDER

• A common programming construct that is based upon a sequence of nested ifs is the if-elseif
ladder.

• It looks like this:

THE SWITCH
STATEMENT
• The switch statement is Java’s

multiway branch statement.

• It provides an easy way to
dispatch execution to different
parts of your code based on the
value of an expression.

• As such, it often provides a better
alternative than a large series of if-
else-if statements.

• Here is the general form of a
switch statement:

NESTED SWITCH STATEMENTS

switch(count) {

case 1:

switch(target) { // nested switch

case 0:

System.out.println("target is zero");

break;

case 1: // no conflicts with outer switch

System.out.println("target is one");

break;

}

break;

case 2: // ...

ITERATION

• Java’s iteration statements are for, while, and do-while.

• A loop repeatedly executes the same set of instructions until a termination condition is met.

WHILE

• The while loop is Java’s most fundamental loop statement. It repeats a statement or block while
its controlling expression is true.

• Here is its general form:

while(condition) {

// body of loop

}

• The condition can be any Boolean expression.

• The body of the loop will be executed if the conditional expression is true. When condition
becomes false, control passes to the next line of code immediately following the loop.

DO-WHILE

• The do-while loop always executes its body at least once, because its conditional expression is
at the bottom of the loop. Its general form is:

do {

// body of loop

} while

FOR

• Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form that
has been in use since the original version of Java. The second is the newer “for-each” form.

• Both types of for loops are discussed here, beginning with the traditional form. Here is the
general form of the traditional for statement:

for(initialization; condition; iteration) {

// body

}

FOREACH

• The for-each style of for is also referred to as the enhanced for loop.

• The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

NESTED LOOPS

// Loops may be nested.

class Nested {

public static void main(String args[]) {

int i, j;

for(i=0; i<10; i++) {

for(j=i; j<10; j++)

System.out.print(".");

System.out.println();

}

}

}

BRANCHING

• Java supports three jump statements: break, continue, and return.

• These statements transfer control to another part of your program.

USE BREAK TO EXIT A LOOP

// Using break to exit a loop.

class BreakLoop {

public static void main(String args[]) {

for(int i=0; i<100; i++) {

if(i == 10) break; // terminate loop if i is 10

System.out.println("i: " + i);

}

System.out.println("Loop complete.");

}

}

USE BREAK AS A FORM OF GOTO

// Using break as a civilized form of goto.

class Break {

public static void main(String args[]) {

boolean t = true;

first: {

second: {

third: {

System.out.println("Before the break.");

if(t) break second; // break out of second block

System.out.println("This won't execute");

}

System.out.println("This won't execute");

}

System.out.println("This is after second block.");

}

}

}

USE CONTINUE

// Demonstrate continue.

class Continue {

public static void main(String args[]) {

for(int i=0; i<10; i++) {

System.out.print(i + " ");

if (i%2 == 0) continue;

System.out.println("");

}

}

}

USE RETURN

// Demonstrate return.

class Return {

public static void main(String args[]) {

boolean t = true;

System.out.println("Before the return.");

if(t) return; // return to caller

System.out.println("This won't execute.");

}

}

ACTIVITY
EXERCISE 4 AND 5

INTRODUCING CLASSES, OBJECTS,
AND METHODS

CLASS FUNDAMENTALS

• Class defines a new data type.

• Once defined, this new type can be used to create objects of that type.

• Thus, a class is a template for an object, and an object is an instance of a class.

• A class is declared by use of the class keyword.

• The data, or variables, defined within a class are called instance variables.

• The code is contained within methods.

• Collectively, the methods and variables defined within a class are called members of the class.

CLASS STRUCTURE

BOX CLASS

Here is a class called Box that defines three instance variables: width, height, and depth.
Currently, Box does not contain any methods.

HOW OBJECTS ARE CREATED

REFERENCE VARIABLES AND ASSIGNMENT

• As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname ();

REFERENCE VARIABLES AND ASSIGNMENT

• Object reference variables act differently than you might expect when an assignment takes
place.

• For example, what do you think the following fragment does?

Box b1 = new Box();

Box b2 = b1;

METHODS

• This is the general form of a method:

type name(parameter-list) {

// body of method

}

• Type specifies the type of data returned by the method.

• The name of the method is specified by name.

• The parameter-list is a sequence of type and identifier pairs separated by commas.

BOX CLASS WITH METHOD

RETURNING A VALUE

METHOD THAT TAKES PARAMETERS

CONSTRUCTORS

• A constructor initializes an object immediately upon creation.

• It has the same name as the class in which it resides and is syntactically like a method.

• The constructor is automatically called when the object is created before the new operator
completes.

• Constructors look a little strange because they have no return type, not even void.

• It is the constructor’s job to initialize the internal state of an object so that the code creating an
instance will have a fully initialized, usable object immediately.

BOX CLASS WITH CONSTRUCTOR

PARAMETERIZED CONSTRUCTORS

THE THIS KEYWORD

• Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines
the this keyword.

• this can be used inside any method to refer to the current object.

• That is, this is always a reference to the object on which the method was invoked.

GARBAGE COLLECTION

• In some languages, such as C++, dynamically allocated objects must be manually released by
use of a delete operator.

• Java takes a different approach; it handles deallocation for you automatically.

• The technique that accomplishes this is called garbage collection.

• It works like this: when no references to an object exist, that object is assumed to be no longer
needed, and the memory occupied by the object can be reclaimed.

ACTIVITY
EXERCISE 6 AND 7

MORE DATA TYPES AND OPERATORS

ARRAYS

• An array is a group of like-typed variables that are referred to by a common name.

• Array of any type (primitive or class) can be created and may have one or more dimensions.

• A specific element in an array is accessed by its index.

• Arrays offer a convenient means of grouping related information.

• In Java, an array is an object.

• Array is a fixed size list of values.

• When declaring an array, the size must be supplied.

ONE-DIMENSIONAL ARRAYS

• A one-dimensional array is, essentially, a list of like-typed variables.

• Syntax to declare a one-dimensional array.

type array-var = new type [size];

int month_days = new int[12];

• To access and display array element, use the index.

System.out.println(month_days[3]);

MULTIDIMENSIONAL
ARRAYS

• In Java, multidimensional arrays are
actually arrays of arrays.

• To declare a multidimensional array
variable, specify each additional index
using another set of square brackets.

int twoD[][] = new int[4][5];

JAGGED ARRAY

• When you allocate memory for a multidimensional array, you need only specify the memory for
the first (leftmost) dimension.

• You can allocate the remaining dimensions separately.

int twoD[][] = new int[4][];
twoD[0] = new int[1];
twoD[1] = new int[2];
twoD[2] = new int[3];
twoD[3] = new int[4];

ALTERNATIVE ARRAY DECLARATION
SYNTAX
• There is a second form that may be used to declare an array: type[] var-name;

• Here, the square brackets follow the type specifier, and not the name of the array variable.

• For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

• This alternative declaration form offers convenience when declaring several arrays at the same
time.

int[] nums, nums2, nums3; // create three arrays

int nums[], nums2[], nums3[]; // create three arrays

ASSIGNING ARRAY REFERENCES

• As with other objects, when you assign one array reference variable to another, you are simply
changing what object that variable refers to.

• You are not causing a copy of the array to be made, nor are you causing the contents of one
array to be copied to the other

USING THE LENGTH MEMBER

• All array indices in Java begin at 0.

• The number of elements in an array is stored as part of the array object in the length attribute.

• If an out-of-bounds runtime access occurs, then a runtime exception is thrown.

int[] arr = new int[5];

int arrayLength = arr.length;

THE FOR-EACH STYLE FOR LOOP

• For-each is another array traversing technique like for loop, while loop, do-while loop
introduced in Java5.

• It starts with the keyword for like a normal for-loop.

• Instead of declaring and initializing a loop counter variable, you declare a variable that is the
same type as the base type of the array, followed by a colon, which is then followed by the
array name.

• In the loop body, you can use the loop variable you created rather than using an indexed array
element.

• It’s commonly used to iterate over an array or a Collections class (eg, ArrayList)

STRINGS

• Java’s string type, called String, is not a primitive type.

• It is in fact a class.

• When you declare a variable of type String, you basically creating an object.

• String class is immutable.

• When you create a String object, you are creating a string that cannot be changed. That is,
once a String object has been created, you cannot change the characters that comprise that
string.

• Each time you need an altered version of an existing string, a new String object is created that
contains the modifications. The original string is left unchanged.

STRING DECLARATIONS

• There are two ways to declare String variables.

STRING LENGTH

• The length of a string is the number of characters that it contains. To obtain this value, call the
length() method.

STRING CONCATENATION

• In general, Java does not allow operators to be applied to String objects.

• The one exception to this rule is the + operator, which concatenates two strings, producing a
String object as the result.

USING COMMAND-LINE ARGUMENTS

• Sometimes you will want to pass information into a program when you run it.

• This is accomplished by passing command-line arguments to main().

• To access the command-line arguments inside a Java program is quite easy - they are stored
as strings in a String array passed to the args parameter of main().

• The first command-line argument is stored at args[0], the second at args[1], and so on.

USING TYPE INFERENCE WITH LOCAL
VARIABLES
• Java 10 introduced a new shiny language feature called local variable type inference.

• Until Java 9, we had to mention the type of the local variable explicitly and ensure it was
compatible with the initializer used to initialize it:

String message = "Good bye, Java 9";

• In Java 10, this is how we could declare a local variable:

var message = "Hello, Java 10";

• Note that this feature is available only for local variables with the initializer.

• It cannot be used for member variables, method parameters, return types, etc. – the initializer is
required as without which compiler won't be able to infer the type.

USING TYPE INFERENCE WITH LOCAL
VARIABLES
• This enhancement helps in reducing the boilerplate code; for example:

Map<Integer, String> map = new HashMap<>();

• This can now be rewritten as:

var idToNameMap = new HashMap<Integer, String>();

• Another thing to note is that var is not a keyword – this ensures backward compatibility for
programs using var say, as a function or variable name.

• var is a reserved type name, just like int.

• Finally, note that there is no runtime overhead in using var nor does it make Java a dynamically
typed language.

• The type of the variable is still inferred at compile time and cannot be changed later.

ACTIVITY
EXERCISE 8 AND 9

A CLOSE LOOK AT METHODS AND
CLASSES

CONTROLLING ACCESS TO CLASS
MEMBERS
• Access level modifiers determine whether other classes can use a particular field or invoke a

particular method.

• A class may be declared with the modifier public, in which case that class is visible to all classes
everywhere.

• If a class has no modifier (the default, also known as package-private), it is visible only within its own
package.

• At the member level, you can also use the public modifier or no modifier (package-private) just as
with top-level classes, and with the same meaning.

• For members, there are two additional access modifiers: private and protected.

• The private modifier specifies that the member can only be accessed in its own class.

• The protected modifier specifies that the member can only be accessed within its own package (as
with package-private) and, in addition, by a subclass of its class in another package.

ACCESS MODIFIERS

Modifier Class Package Subclass World

public Y Y Y Y

protected Y Y Y N

default Y Y N N

private Y N N N

TIPS ON CHOOSING AN ACCESS LEVEL

• If other programmers use your class, you want to ensure that errors from misuse cannot
happen.

• Access levels can help you do this.

• Use the most restrictive access level that makes sense for a particular member. Use private unless
you have a good reason not to.

• Avoid public fields except for constants.

ENCAPSULATION

• Encapsulation in Java is a mechanism of wrapping the data (variables) and code acting on the
data (methods) together as a single unit.

• In encapsulation, the variables of a class will be hidden from other classes and can be
accessed only through the methods of their current class.

• Therefore, it is also known as data hiding.

PROPERLY
ENCAPSULATED

• To achieve encapsulation in Java

• Declare the variables of a class as private.

• Provide public setter and getter methods to
modify and view the variables values.

• The public setXXX() and getXXX() methods are
the access points of the instance variables of the
EncapTest class.

• Normally, these methods are referred as getters
and setters.

PASS OBJECTS TO METHODS

• Java is strictly pass-by-value.

• Object references can be parameters.

• Call by value is used, but now the value is an object reference.

• This reference can be used to access the object and possibly change it.

RETURNING OBJECTS

METHOD OVERLOADING

• In Java, it is possible to define two or more methods within the same class that share the same
name, as long as their parameter declarations are different.

• When this is the case, the methods are said to be overloaded, and the process is referred to as
method overloading.

• Method overloading is one of the ways that Java supports polymorphism.

• When an overloaded method is invoked, Java uses the type and/or number of arguments as its
guide to determine which version of the overloaded method to actually call.

• Thus, overloaded methods must differ in the type and/or number of their parameters.

METHOD OVERLOADING

OVERLOADING
CONSTRUCTORS

• In addition to overloading normal
methods, you can also overload
constructor methods.

• In fact, for most real-world classes
that you create, overloaded
constructors will be the norm, not
the exception.

RECURSION

• Java supports recursion. Recursion is the process of defining something in terms of itself.

• As it relates to Java programming, recursion is the attribute that allows a method to call itself.

• A method that calls itself is said to be recursive.

FACTORIAL

UNDERSTANDING STATIC

• There will be times when you will want to define a class member that will be used
independently of any object of that class.

• Normally, a class member must be accessed only in conjunction with an object of its class.

• However, it is possible to create a member that can be used by itself, without reference to a
specific instance.

• To create such a member, precede its declaration with the keyword static.

• When a member is declared static, it can be accessed before any objects of its class are
created, and without reference to any object.

• You can declare both methods and variables to be static.

INTRODUCING NESTED AND INNER
CLASSES
• It is possible to define a class within another class; such classes are known as nested classes.

• The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A.

• A nested class has access to the members, including private members, of the class in which it
is nested. However, the enclosing class does not have access to the members of the nested
class.

• A nested class that is declared directly within its enclosing class scope is a member of its
enclosing class.

• It is also possible to declare a nested class that is local to a block.

TYPES OF INNER CLASSES

There are two types of nested classes: static and non-static.

• A static nested class is one that has the static modifier applied.

• Because it is static, it must access the non-static members of its enclosing class through an
object.

• That is, it cannot refer to non-static members of its enclosing class directly.

• Because of this restriction, static nested classes are seldom used.

INNER CLASS

VARARGS: VARIABLE-LENGTH ARGUMENTS

• Beginning with JDK 5, Java has included a feature that simplifies the creation of methods that
need to take a variable number of arguments.

• This feature is called varargs and it is short for variable-length arguments.

• A method that takes a variable number of arguments is called a variable-arity method, or simply
a varargs method.

ACTIVITY
EXERCISE 10 AND 11

INHERITANCE

INHERITANCE BASICS

• Using inheritance, you can create a general class that defines traits common to a set of related
items.

• This class can then be inherited by other, more specific classes, each adding those things that
are unique to it.

• In the terminology of Java, a class that is inherited is called a superclass.

• The class that does the inheriting is called a subclass.

• Therefore, a subclass is a specialized version of a superclass.

• It inherits all of the members defined by the superclass and adds its own, unique elements.

MEMBER ACCESS AND INHERITANCE

• Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private.

• Superclass also have no access to its subclasses' members.

CONSTRUCTORS AND INHERITANCE

• Although a subclass inherits all of the methods and variables from superclass, it does not
inherit constructors.

• Subclasses need to create its own constructor and add a call to the superclass’s constructor.

USING SUPER TO CALL SUPERCLASS
CONSTRUCTORS
• A superclass’s constructor is always called in addition to the a subclass’s constructor.

• The call super() can take any number of arguments appropriate to the various constructors
available in the parent class, but it must be the first statement in the constructor.

• Example as above.

USING SUPER TO ACCESS SUPERCLASS
MEMBERS
• The second form of super acts somewhat like this, except that it always refers to the superclass

of the subclass in which it is used.

• This usage has the following general form super.member

• Here, member can be either a method or an instance variable.

CREATING A MULTILEVEL HIERARCHY

• Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass.

• However, you can build hierarchies that contain as many layers of inheritance as you like.

• As mentioned, it is perfectly acceptable to use a subclass as a superclass of another.

WHEN ARE CONSTRUCTORS EXECUTED?

• When a class hierarchy is created, in what order are the constructors for the classes that make
up the hierarchy executed?

• For example, given a subclass called B and a superclass called A, is A’s constructor executed
before B’s, or vice versa?

• The answer is that in a class hierarchy, constructors complete their execution in order of
derivation, from superclass to subclass.

• Further, since super() must be the first statement executed in a subclass’ constructor, this
order is the same whether or not super() is used.

• If super() is not used, then the default or parameterless constructor of each superclass will be
executed.

METHOD OVERRIDING

• In addition to producing a new class based on an old one by additional features, you can
modify existing behaviour of the parent class.

• If a method is defined in a subclass so that the name, return type, and argument list match
exactly those of a method in the parent class, then the new method is said to override the old
one.

OVERRIDDEN METHODS SUPPORT
POLYMORPHISM
• While the examples in the preceding section demonstrate the mechanics of method overriding,

they do not show its power.

• Indeed, if there were nothing more to method overriding than a name space convention, then it
would be, at best, an interesting curiosity, but of little real value. However, this is not the case.

• Method overriding forms the basis for one of Java’s most powerful concepts: dynamic method
dispatch.

• Dynamic method dispatch is the mechanism by which a call to an overridden method is
resolved at run time, rather than compile time.

• Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

POLYMORPHISM

• An object has only one form (the one that is given to it when constructed).

• However, a variable is polymorphic because it can refer to objects of different forms.

• Java permits you to refer to an object with a variable that is one of the parent class type.

WHY OVERRIDE METHODS?

• As stated earlier, overridden methods allow Java to support run-time polymorphism.

• Polymorphism is essential to object-oriented programming for one reason: it allows a general
class to specify methods that will be common to all of its derivatives, while allowing subclasses
to define the specific implementation of some or all of those methods.

• Overridden methods are another way that Java implements the “one interface, multiple
methods” aspect of polymorphism.

USING ABSTRACT METHODS

• Abstract methods are those defined with abstract keyword at its method signature.

abstract type name(parameter-list);

• Abstract methods mean there is no implementation provided, that is not method body.

abstract void callme();

There are situations in which you will want to define a superclass that declares the structure of a
given abstraction without providing a complete implementation of every method. That is,
sometimes you will want to create a superclass that only defines a generalized form that will be
shared by all of its subclasses, leaving it to each subclass to fill in the details.

USING ABSTRACT CLASSES

• Any class that contains one or more abstract methods must also be declared abstract.

• To declare a class abstract, you simply use the abstract keyword in front of the class keyword
at the beginning of the class declaration.

• There can be no objects of an abstract class. That is, an abstract class cannot be directly
instantiated with the new operator.

• Any subclass of an abstract class must either implement all of the abstract methods in the
superclass, or be declared abstract itself.

USING FINAL WITH INHERITANCE

The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply to
inheritance.

• Using final to prevent overriding.

• Using final to prevent inheritance.

THE OBJECT CLASS

• There is one special class, Object, defined by Java.

• All other classes are subclasses of Object.

• That is, Object is a superclass of all other classes.

• This means that a reference variable of type Object can refer to an object of any other class.

• Object defines the following methods, which means that they are available in every object.

ACTIVITY
EXERCISE 12 AND 13

PACKAGES AND INTERFACES

PACKAGES

• Packages are containers for classes.

• Packages are used to keep the class name space compartmentalized.

• Packages are stored in a hierarchical manner and are explicitly imported into new class
definitions.

• The package is both a naming and a visibility control mechanism.

• Define classes inside a package that are not accessible by code outside that package.

• Define class members that are exposed only to other members of the same package.

package <top_pkg_name>[.<sub_pkg_name>];

PACKAGES AND MEMBER ACCESS

• Packages act as containers for classes and other subordinate packages.

• Classes act as containers for data and code.

• Java addresses four categories of visibility for class members.

• Subclasses in the same package.

• Non-subclasses in the same package.

• Subclasses in different packages.

• Classes that are neither in the same package nor subclasses.

UNDERSTANDING PROTECTED MEMBERS

Private Default Protected Public

Same class Yes Yes Yes Yes

Same package
subclass

No Yes Yes Yes

Same package
non-subclass

No Yes Yes Yes

Different package
subclass

No No Yes yes

Different package
non-subclass

No No No Yes

IMPORTING PACKAGES

• Java includes the import statement to bring certain classes, or entire packages, into visibility.

• In a Java source file, import statement occur immediately after the package statement, and
before any class definitions.

• The import statement syntax.

import pkg1 [.pkg2].(classname | *);

JAVA’S CLASS LIBRARY IS CONTAINED IN
PACKAGES

• All the standard Java classes included with Java are stored in a package called java.

• The basic language functions are stored in a package inside of the java package called
java.lang.

• The java.lang package is imported implicitly by the compiler for all programs.

INTERFACES

• Using the interface keyword, Java allows you to fully abstract a class’s interface from its
implementation.

• Interfaces are syntactically like classes, but they lack instance variables, and as a rule, their
methods are declared without any body.

• Once it is defined, any number of classes can implement an interface.

• Also, one class can implement any number of interfaces.

DEFINING AN INTERFACE

access interface name {

return-type method-name1(parameter-list);

return-type method-name2(parameter-list);

type final-varname1 = value;

type final-varname2 = value;

//...

return-type method-nameN(parameter-list);

type final-varnameN = value;

}

IMPLEMENTING INTERFACES

• To implement an interface, include the implements clause in a class definition, and then create
the methods required by the interface.

class classname [extends superclass] [implements interface [,interface...]] {

// class-body

}

• If a class implements more than one interface, the interfaces are separated with a comma.

USING INTERFACES REFERENCES

• You can declare variables as object references that use an interface rather than a class type.

• Any instance of any class that implements the declared interface can be referred to by such a
variable.

• When you call a method through one of these references, the correct version will be called
based on the actual instance of the interface being referred to.

• The method to be executed is looked up dynamically at run time.

VARIABLES IN INTERFACES

• Variables declared in an interface are constants that can be shared by multiple classes.

interface SharedConstants {

int NO = 0;

int YES = 1;

int MAYBE = 2;

int LATER = 3;

int SOON = 4;

int NEVER = 5;

}

INTERFACES CAN BE EXTENDED

• One interface can inherit another by use of the keyword extends.

• The syntax is the same as for inheriting classes.

• When a class implements an interface that inherits another interface, it must provide
implementations for all methods required by the interface inheritance chain.

DEFAULT INTERFACE METHODS

 Since JDK 8, Java added a new capability to interface called the default method.

 A default method lets you define a default implementation for an interface method.

 A primary motivation for the default method was to provide a means by which interfaces could
be expanded without breaking existing code.

 The declaration is preceded by the keyword default.

USE STATIC METHODS IN AN INTERFACE

 JDK 8 added another new capability to interface; the ability to define one or more static
methods.

 Like static methods in a class, a static method defined by an interface can be called
independently of any object.

 A static method is called by prefixing the interface name.

PRIVATE INTERFACE METHODS

 Java 9 onward, you are allowed to include private methods in interfaces.

 Using private methods, now encapsulation is possible in interfaces as well.

 These private methods will improve code re-usability inside interfaces.

 For example, if two default methods needed to share code, a private interface method would
allow them to do so, but without exposing that private method to its implementing classes.

PRIVATE INTERFACE METHODS

• Using private methods in interfaces have four rules:

• Private interface method cannot be abstract.

• Private method can be used only inside interface.

• Private static method can be used inside other static and non-static interface methods.

• Private non-static methods cannot be used inside private static methods.

ACTIVITY

EXCEPTION HANDLING

EXCEPTION HANDLING

• Exceptions are a mechanism used by many programming languages to describe what to do
when something unexpected happens.

• Typically, something unexpected is an error of some sort, for example when a method is
invoked with unacceptable arguments, or a network connection fails, or the use asks to open a
non-existent file.

EXCEPTION HANDLING FUNDAMENTALS

 A Java exception is an object that describes an exceptional (that is, error) condition that has
occurred in a piece of code.

 When an exceptional condition arises, an object representing that exception is created and
thrown in the method that caused the error.

 That method may choose to handle the exception itself or pass it on.

 Either way, at some point, the exception is caught and processed.

 Exceptions can be generated by the Java run-time system, or they can be manually generated
by your code.

 Java exception handling is managed via five keywords: try, catch, throw, throws, and finally.

THE CONSEQUENCES OF AN UNCAUGHT
EXCEPTION

• Technically, any thrown exceptions must be handled some where within the program. Any
exception that is not caught by your program will ultimately be processed by the default
handler. The default handler displays a string describing the exception, prints a stack trace from
the point at which the exception occurred, and terminates the program.

USING MULTIPLE CATCH STATEMENTS

 In some cases, more than one exception could be raised by a single piece of code.

 To handle this type of situation, you can specify two or more catch clauses, each catching a
different type of exception.

 When an exception is thrown, each catch statement is inspected in order, and the first one
whose type matches that of the exception is executed.

CATCHING SUBCLASS EXCEPTIONS

 A catch clause for a superclass will also match any of its subclasses.

 For example, since the superclass of all exceptions is Throwable, to catch all possible
exceptions, catch Throwable.

 If you want to catch exceptions of both a superclass type and a subclass type, put the subclass
first in the catch sequence. If you don’t, then the superclass catch will also catch all derived
classes.

 This rule is self-enforcing because putting the superclass first causes unreachable code to be
created, since the subclass catch clause can never execute.

 In Java, unreachable code is an error.

TRY BLOCKS CAN BE NESTED

 The try statement can be nested. That is, a try statement can be inside another try block.

 If an inner try statement does not have a catch handler for a particular exception, the stack in
unwound and the next try statement’s catch handlers are inspected for a match.

 This continues until one of the catch statements succeed, or until all the nested try statements
are exhausted.

 If no catch statement matches, then the Java run-time system (default handler) will handle the
exception.

THROWING AN EXCEPTION

 Before you can catch an exception, some code somewhere must throw one.

 Any code can throw an exception: your code, code from a package written by someone else
such as the packages that come with the Java platform, or the Java runtime environment.

 Regardless of what throws the exception, it’s always thrown with the throw statement.

A CLOSER LOOK AT THROWABLE

 The class java.lang.Throwable acts as the parent class for all objects that can be thrown and
caught using the exception-handling mechanisms.

 Methods defined in the Throwable class retrieve the error message associated with the
exception and print the stack trace showing where the exception occurred.

 There are three key subclasses of Throwable: Error, RuntimeException and Exception.

USING THROW

 To throw an exception explicitly, using the throw statement. The general form of throw is shown
here:

throw ThrowableInstance;

 The flow of execution stops immediately after the throw statement; any subsequent statements
are not executed.

 The nearest enclosing try block is inspected to see if it has a catch statement that matches the
type of exception.

 If it does find a match, control is transferred to that statement. If not, then the next enclosing try
statement is inspected, and so on. If no matching catch is found, then the default exception
handler halts the program and prints the stack trace.

USING THROWS

 If a method can cause an exception that it does not handle, it must specify this behaviour so
that callers of the method can guard themselves against that exception.

 You do this by including a throws clause in the method’s declaration.

 A throws clause lists the types of exceptions that a method might throw.

USING FINALLY

 finally creates a block of code that will be executed after a try /catch block has completed and
before the code following the try/catch block.

 The finally block will execute whether or not an exception is thrown.

 If an exception is thrown, the finally block will execute even if no catch statement matches the
exception.

 This can be useful for closing file handles and freeing up any other resources that might have
been allocated at the beginning of a method with the intent of disposing of them before
returning.

 The finally clause is optional.

THREE ADDITIONAL EXCEPTION FEATURES

• Beginning with JDK 7, three interesting and useful features have been added to the exception
system.

• The first automates the process of releasing a resource, such as a file, when it is no longer
needed.

• The second feature is called multi-catch, and the third is sometimes referred to as final rethrow
or more precise rethrow.

THE TRY-WITH-RESOURCES STATEMENT

• The try-with-resources statement is a try statement that declares one or more resources.

• A resource is an object that must be closed after the program is finished with it.

• The try-with-resources statement ensures that each resource is closed at the end of the
statement.

• Any object that implements java.lang.AutoCloseable, which includes all objects which
implement java.io.Closeable, can be used as a resource.

THE TRY-WITH-RESOURCES STATEMENT

The following example reads the first line from a file. It uses an instance of BufferedReader to read
data from the file. BufferedReader is a resource that must be closed after the program is finished
with it:

HANDLING MORE THAN ONE TYPE OF
EXCEPTION
In Java SE 7 and later, a single catch block can handle more than one type of exception. This
feature can reduce code duplication and lessen the temptation to catch an overly broad exception.

RETHROWING EXCEPTIONS WITH MORE
INCLUSIVE TYPE CHECKING
The Java SE 7 compiler performs more precise analysis of rethrown exceptions than earlier
releases of Java SE. This enables you to specify more specific exception types in the throws
clause of a method declaration.

RETHROWING EXCEPTIONS WITH MORE
INCLUSIVE TYPE CHECKING
However, in Java SE 7, you can specify the exception types FirstException and SecondException
in the throws clause in the rethrowException method declaration. The Java SE 7 compiler can
determine that the exception thrown by the statement throw e must have come from the try block,
and the only exceptions thrown by the try block can be FirstException and SecondException. Even
though the exception parameter of the catch clause, e, is type Exception, the compiler can
determine that it is an instance of either FirstException or SecondException:

JAVA’S BUILT-IN EXCEPTIONS

 Inside the standard package java.lang, Java defines several exception classes.

 There are two broad categories of exceptions, known as checked and unchecked exceptions.

 The most general of these unchecked exceptions are subclasses of the standard type
RuntimeException. These exceptions need not be included in any method’s throws list.

 In the language of Java, these are called unchecked exceptions because the compiler does
not check to see if a method handles or throws these exceptions.

 Checked exceptions are those that the programmer is expected to handle in the program, and
that arise from external conditions that can readily occur in a working program. Examples
would be a requested file not being found or a network failure.

CREATING
EXCEPTION

SUBCLASSES

ACTIVITY

USING I/O

JAVA’S I/O IS BUILT UPON STREAMS

 Java programs perform I/O through streams.

 A stream is an abstraction that either produces or consumes information.

 A stream is linked to a physical device by the Java I/O system.

 This means that an input stream can abstract many kinds of input: from a disk file, a keyboard,
or a network socket.

 Likewise, an output stream may refer to the console, a disk file, or a network connection.

 Java implements streams within class hierarchies defined in the java.io package.

BYTE STREAMS AND CHARACTER STREAMS

 Java defines two types of streams: byte and character.

 Byte streams provide a convenient means for handling input and output of bytes.

 Byte streams are used, for example, when reading or writing binary data.

 Character streams provide a convenient means for handling input and output of characters.

 They use Unicode and, therefore, can be internationalized.

 Also, in some cases, character streams are more efficient than byte streams.

THE BYTE STREAM CLASSES

 Byte streams are defined by using two class hierarchies.

 At the top are two abstract classes: InputStream and OutputStream.

 Each of these abstract classes has several concrete subclasses that handle the differences
among various devices, such as disk files, network connections, and even memory buffers.

 The byte stream classes in java.io are shown in the next table.

 The abstract classes InputStream and OutputStream define several key methods that the other
stream classes implement.

 Two of the most important are read() and write(), which, respectively, read and write bytes of
data.

 Each has a form that is abstract and must be overridden by derived stream classes.

THE CHARACTER STREAM CLASSES

 Character streams are defined by using two class hierarchies.

 At the top are two abstract classes: Reader and Writer.

THE PREDEFINED STREAMS

 All Java programs automatically import the java.lang package.

 This package defines a class called System, which encapsulates several aspects of the run-
time environment.

 System also contains three predefined stream variables: in, out, and err.

 These fields are declared as public, static, and final within System.

 This means that they can be used by any other part of your program and without reference to a
specific System object.

USING
THE BYTE
STREAMS

READING AND
WRITING FILES

AUTOMATICALLY CLOSING A FILE

 JDK 7 added a new feature that offers another way to manage resources, such as file streams,
by automating the closing process.

 This feature, sometimes referred to as automatic resource management, or ARM for short, is
based on an expanded version of the try statement.

 The principal advantage of automatic resource management is that it prevents situations in
which a file (or other resource) is inadvertently not released after it is no longer needed.

try (resource-specification) {

// use the resource

}

RANDOM-ACCESS FILES

• Random access files permit nonsequential, or random, access to a file's contents. To access a
file randomly, you open the file, seek a particular location, and read from or write to that file.

• This functionality is possible with the SeekableByteChannel interface. The
SeekableByteChannel interface extends channel I/O with the notion of a current position.
Methods enable you to set or query the position, and you can then read the data from, or write
the data to, that location. The API consists of a few, easy to use, methods:

 position – Returns the channel's current position

 position(long) – Sets the channel's position

 read(ByteBuffer) – Reads bytes into the buffer from the channel

 write(ByteBuffer) – Writes bytes from the buffer to the channel

 truncate(long) – Truncates the file (or other entity) connected to the channel

USING JAVA’S CHARACTER-BASED
STREAMS

USING JAVA’S TYPE WRAPPERS TO
CONVERT NUMERIC TO STRINGS
• All classes inherit a method called toString from the Object class. The type-wrapper classes

override this method to provide a reasonable string representation of the value held by the
number object.

• The following program, ToStringDemo (in a .java source file), uses the toString method to
convert a number to a string. Next, the program uses some string methods to compute the
number of digits before and after the decimal point:

ACTIVITY

MULTITHREADED PROGRAMMING

MULTITHREADED PROGRAMMING

 Java provides built-in support for multithreaded programming.

 A multithreaded program contains two or more parts that can run concurrently.

 Each part of such a program is called a thread, and each thread defines a separate path of
execution.

 Thus, multithreading is a specialized form of multitasking.

PROCESS VS THREAD

 A process is, in essence, a program that is executing.

 Thus, process-based multitasking is the feature that allows your computer to run two or more
programs concurrently.

 In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code.

 This means that a single program can perform two or more tasks simultaneously.

THREAD STATES

 A thread can be running.

 It can be ready to run as soon as it gets CPU time.

 A running thread can be suspended, which temporarily halts its activity.

 A suspended thread can then be resumed, allowing it to pick up where it left off.

 A thread can be blocked when waiting for a resource.

 At any time, a thread can be terminated, which halts its execution immediately.

 Once terminated, a thread cannot be resumed.

THE THREAD CLASS AND RUNNABLE
INTERFACE

• Java’s multithreading system is built upon the Thread class, its methods, and its companion
interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly refer
to the ethereal state of a running thread, you will deal with it through its proxy, the Thread
instance that spawned it.

• To create a new thread, your program will either extend Thread or implement the Runnable
interface. The Thread class defines several methods that help manage threads.

THREAD CLASS

Method Meaning

getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

THE MAIN THREAD

• When a Java program starts up, one thread begins running immediately. This is usually called
the main thread of your program because it is the one that is executed when your program
begins. The main thread is important for two reasons:

 It is the thread from which other “child” threads will be spawned.

 Often, it must be the last thread to finish execution because it performs various shutdown actions.

CREATING
A THREAD

CREATING A THREAD

EXTENDING THREAD

EXTENDING THREAD

CREATING MULTIPLE THREADS

CREATING MULTIPLE THREADS

DETERMINING WHEN A THREAD ENDS

• Two ways exist to determine whether a thread has finished: isAlive() and join() methods.

 The isAlive() method returns true if the thread upon which it is called is still running. It returns false
otherwise.

 The join() method waits until the thread on which it is called terminates. Its name comes from the
concept of the calling thread waiting until the specified thread joins it.

ISALIVE() AND JOIN()

ISALIVE() AND JOIN()

THREAD PRIORITIES

• Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run. In theory, over a given period of time, higher-priority threads get more CPU time
than lower-priority threads.

• To set a thread’s priority, use the setPriority() method, which is a member of Thread.

final void setPriority(int level)

• The value of level must be within the range MIN_PRIORITY and MAX_PRIORITY. Currently,
these values are 1 and 10, respectively. To return a thread to default priority, specify
NORM_PRIORITY, which is currently 5.

SYNCHRONIZATION

• When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization.

SYNCHRONIZATION

 Key to synchronization is the concept of the monitor.

 A monitor is an object that is used as a mutually exclusive lock.

 Only one thread can own a monitor at a given time.

 When a thread acquires a lock, it is said to have entered the monitor.

 All other threads attempting to enter the locked monitor will be suspended until the first thread
exits the monitor.

 These other threads are said to be waiting for the monitor.

 A thread that owns a monitor can reenter the same monitor if it so desires.

USING
SYNCHRONIZED

STATEMENT

THREAD COMMUNICATION USING NOTIFY(),
WAIT(), AND NOTIFYALL()

• To avoid polling, Java includes an elegant interprocess communication mechanism via the wait(
), notify(), and notifyAll() methods. These methods are implemented as final methods in
Object, so all classes have them. All three methods can be called only from within a
synchronized context.

 wait() tells the calling thread to give up the monitor and go to sleep until some other thread enters the
same monitor and calls notify() or notifyAll().

 notify() wakes up a thread that called wait() on the same object.

 notifyAll() wakes up all the threads that called wait() on the same object. One of the threads will be
granted access.

SUSPENDING, RESUMING, AND STOPPING
THREADS

• Prior to Java 2, a program used suspend(), resume(), and stop(), which are methods defined
by Thread, to pause, restart, and stop the execution of a thread. However, all these methods
are deprecated by Java 2, since these methods can sometimes cause serious system failures.

• Instead, a thread must be designed so that the run() method periodically checks to determine
whether that thread should suspend, resume, or stop its own execution. Typically, this is
accomplished by establishing a flag variable that indicates the execution state of the thread. As
long as this flag is set to “running,” the run() method must continue to let the thread execute. If
this variable is set to “suspend,” the thread must pause. If it is set to “stop,” the thread must
terminate.

ACTIVITY

ENUMERATIONS, AUTOBOXING AND
STATIC IMPORT

ENUMERATIONS

 Enumerations was added since JDK 5.

 An enumeration is a list of named constants.

 Java enumeration defines a class type.

 Java enumeration can have constructors, methods and instance variables.

 An enumeration is created using the enum keyword.

THE VALUES() AND VALUEOF() METHODS

 The values() method returns an array that contains a list of the enumeration constants.

 The valueOf() method returns the enumeration constant whose value corresponds to the
string passed in str.

 In both cases, enum-type is the type of the enumeration.

JAVA ENUMERATIONS ARE CLASS TYPES

 Java enumeration is a class type.

 Java enum can have constructors, add instance variables and methods, and even implement
interfaces.

 However, no object is created as an instance of an enum.

 Instead, the constructor of an enum is called when each enumeration constant is created.

ENUMERATIONS INHERIT ENUM

• All enumerations automatically inherit one: java.lang.Enum

• This class defines several methods that are available for use by all enumerations.

• Some methods that might be useful:

• ordinal() : returns a value that indicates an enumeration constant’s position in the list of constants

• compareTo() : compare the ordinal value of two constants of the same enumeration

• equals() : compare for equality an enumeration constant with any other object

TYPE WRAPPERS

 The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and Boolean.

 These classes offer a wide array of methods that allow you to fully integrate the primitive
types into Java’s object hierarchy.

CHARACTER

• Character is a wrapper around a char. The constructor for Character is
Character(char ch)

• Here, ch specifies the character that will be wrapped by the Character object being created.

• To obtain the char value contained in a Character object, call charValue(), shown here:
char charValue()

• It returns the encapsulated character.

BOOLEAN

• Boolean is a wrapper around boolean values. It defines these constructors:
Boolean(boolean boolValue)

Boolean(String boolString)

• In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string "true" (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

• To obtain a boolean value from a Boolean object, use booleanValue(), shown here:
boolean booleanValue()

• It returns the boolean equivalent of the invoking object.

NUMERIC TYPE WRAPPERS

• These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue()

double doubleValue()

float floatValue()

int intValue()

long longValue()

short shortValue()

AUTOBOXING

• Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.

• Autoboxing is the process by which a primitive type is automatically encapsulated (boxed) into its
equivalent type wrapper whenever an object of that type is needed. There is no need to explicitly
construct an object.

• Auto-unboxing is the process by which the value of a boxed object is automatically extracted (unboxed)
from a type wrapper when its value is needed. There is no need to call a method such as intValue() or
doubleValue().

Integer iOb = 100; // autobox an int

int i = iOb; // auto-unbox

AUTOBOXING AND METHODS

• In addition to the simple case of assignments, autoboxing automatically occurs whenever a
primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type.

• Thus, autoboxing/unboxing might occur when an argument is passed to a method, or when a
value is returned by a method.

AUTOBOXING/UNBOXING OCCURS IN
EXPRESSIONS

• In general, autoboxing and unboxing take place whenever a conversion into an object or from
an object is required.

• This applies to expressions.

• Within an expression, a numeric object is automatically unboxed.

• The outcome of the expression is reboxed, if necessary.

STATIC IMPORT

• If you have to access the static members of a class, then it is necessary to qualify the
references with the class from which they come.

• Java 5 provides the static import feature that enables unqualified access to static members
without having to qualify them with the class name.

• Use static imports sparingly. If you overuse the static import feature, it can make your
program unreadable and unmaintainable, polluting its namespace with all of the static
members that you import. Readers of your code (including you, a few months after you wrote
it) will not know from which class a static member comes. Importing all of the static members
from a class can be very harmful to readability; if you need one or two members only, import
them individually. Used appropriately, static import can make your program more readable,
by removing the boilerplate of repetition of class names.

ACTIVITY

GENERICS

GENERIC FUNDAMENTALS

 The term generics means parameterized types.

 Using generics, it is possible to create a single class, for example, that automatically works
with different types of data.

 A class, interface, or method that operates on a parameterized type is called generic, as in
generic class or generic method.

 Generics added the type safety.

 With generics, all casts are automatic and implicit.

A SIMPLE
GENERIC
EXAMPLE

BOUNDED TYPES

• Sometimes it is useful to limit the types that can be passed to a type parameter.

• For example, assume that you want to create a generic class that contains a method that
returns the average of an array of numbers.

• Furthermore, you want to use the class to obtain the average of an array of any type of
number, including integers, floats, and doubles.

• Thus, you want to specify the type of the numbers generically, using a type parameter.

USING
WILDCARD

ARGUMENTS

BOUNDED WILDCARDS

• Wildcard arguments can be bounded in much the same
way that a type parameter can be bounded.

• A bounded wildcard is especially important when you are
creating a generic type that will operate on a class
hierarchy.

GENERIC
METHODS

GENERIC
CONSTRUCTORS

GENERIC
INTERFACES

RAW TYPES AND LEGACY CODE

TYPE INFERENCE WITH THE DIAMOND
OPERATOR

• Prior to JDK 7, to create an instance of MyClass, you would have needed to use a statement
similar to the following:

MyClass<Integer, String> mcOb = new MyClass<Integer, String>(98, "A String");

• Today the preceding declaration can be rewritten as shown here:

MyClass<Integer, String> mcOb = new MyClass<>(98, "A String");

SOME GENERIC RESTRICTIONS

• Type Parameters Can’t Be Instantiated

• Restrictions on Static Members

• Generic Array Restrictions

• Generic Exception Restriction

ACTIVITY

LAMBDA EXPRESSIONS

INTRODUCING LAMBDA EXPRESSIONS

• Key to understanding Java’s implementation of lambda expressions are two constructs. The
first is the lambda expression, itself. The second is the functional interface.

• A lambda expression is, essentially, an anonymous (that is, unnamed) method. However, this
method is not executed on its own. Instead, it is used to implement a method defined by a
functional interface. Thus, a lambda expression results in a form of anonymous class. Lambda
expressions are also commonly referred to as closures.

• A functional interface is an interface that contains one and only one abstract method.

LAMBDA EXPRESSION FUNDAMENTALS

• The new operator, sometimes referred to as the lambda operator or the arrow operator, is
−>.

 It divides a lambda expression into two parts.

 The left side specifies any parameters required by the lambda expression.

 On the right side is the lambda body, which specifies the actions of the lambda
expression.

LAMBDA EXPRESSION FUNDAMENTALS

• Java defines two types of lambda bodies.

 Single expressions.

 Block of codes.

() -> 123.45

() -> Math.random() * 100

(n) -> (n % 2) == 0

FUNCTIONAL INTERFACES

• A functional interface is an interface that specifies only one abstract method.

BLOCK
LAMBDA

EXPRESSION
S

Lambdas that have block
bodies are sometimes

referred to as block lambdas.

GENERIC FUNCTIONAL INTERFACES

• A lambda expression, itself, cannot specify type parameters.

• Thus, a lambda expression cannot be generic. However, the functional interface associated
with a lambda expression can be generic.

LAMBDA EXPRESSIONS AND VARIABLE
CAPTURE
• Variables defined by the enclosing scope of a lambda expression are accessible within the

lambda expression.

 A lambda expression can use an instance or static variable defined by its enclosing class.

 A lambda expression also has access to this keyword.

 However, when a lambda expression uses a local variable from its enclosing scope, a special
situation is created that is referred to as a variable capture. In this case, a lambda expression
may only use local variables that are effectively final.

 An effectively final variable is one whose value does not change after it is first assigned.

 There is no need to explicitly declare such a variable as final, although doing so would
not be an error.

THROW AN EXCEPTION FROM WITHIN A
LAMBDA EXPRESSION

• A lambda expression can throw an exception.

• However, it if throws a checked exception, then that exception must be compatible with the
exception(s) listed in the throws clause of the abstract method in the functional interface.

METHOD REFERENCES TO STATIC
METHODS

METHOD REFERENCES TO INSTANCE
METHODS

METHOD REFERENCES WITH GENERICS

CONSTRUCTOR
REFERENCES

PREDEFINED FUNCTIONAL INTERFACES

ACTIVITY

THE END AND THANK YOU!

