INTRODUCING DATA
TYPES AND OPERATORS

IVERSON ASSOCIATES SDN BHD

Introducing Data Types and Operators

Why Data Types Are Important

e Javais a strongly typed language.
o Everyvariable, expression has a type, and every type is strictly defined.
o All assignments, whether explicit or via parameter passing in method calls, are checked

for type compatibility.

e No automatic coercions or conversions of conflicting types as in some languages.

e The Java compiler checks all expressions and parameters to ensure that the types are
compatible.

o Any type mismatches are errors that must be corrected before the compiler will finish

compiling the class.

Java's Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and boolean.

Group Description

Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

Float-point This group includes float and double, which represent
numbers with fractional precision.

Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

Boolean This group includes boolean, which is a special type for representing
true/false values.

Integers

Java defines four integer types: byte, short, int, and long. All of these are signed, positive and
negative values. Java does not support unsigned, positive-only integers.

Name Width Range

long 64 —-9,223,572,036,854,775,808 t0 9,223,372,036,854,775,807
int 32 -2,147,483,648 to 2,147,483,647

short 16 —-32,768 to 32,767

byte 8 -128 to 127

Floating points

Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or
transcendentals such as sine and cosine, result in a value whose precision requires a floating
point type.

Name Width Range

double 04 4 9e-324 10 1.8e+308

float 32 1.4e-045 to 3.4e+038
Characters

In Java, the data type used to store characters is char. At the time of Java's creation, Unicode
required 16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are
no negative chars. The standard set of characters known as ASCII still ranges from O to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from O to 255.

Boolean

Java has a primitive type, called boolean, for logical values. It can have only one of two possible
values, true or false.

Variables

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a
scope, which defines their visibility, and a lifetime.

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] ...];

The Scope and Lifetime of Variables

o Ablock defines a scope. Thus, each time you start a new block, you are creating a new
scope.

o A scope determines what objects are visible to other parts of your program.

o [t also determines the lifetime of those objects.

Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical.

Arithmetic Operators

Operator

Result

+

Addition (also unary plus)

Subtraction (also unary minus)

Multiplication

Division

Modulus

Increment

Decrement

Addition assignment

Subtraction assignment

Multiplication assignment

Division assignment

Modulus assignment

Bitwise Operators

Operator

Result

~

Bitwise unary NOT

&

Bitwise AND

Bitwise OR

A

Bitwise exclusive OR

>>

Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

A= Bitwise exclusive OR assignment
>>= Shift right assignment
>>>= Shift right zero fill assignment
<<= Shift left assignment

Relational Operators

Operator Result
== Equal to
= Not eqgual to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to

Boolean Logical Operators

Operator Result
& Logical AND
| Logical OR
A Logical XOR (exclusive OR)
I Short-circuit OR
58 Short-circuit AND
! Logical unary NOT
= AND assignment
|= OR assignment
A= XOR assignment
== Equal to
I= Not equal to
7 Ternary if-then-else

A B AlB A&B AAMNB
False False False False False True
True False True False True False
False True True False True True
True True True True False False

The Assignment Operator

e The assignment operator is the single equal sign, =.

e The assignment operator works in Java much as it does in any other computer
language.

e [t has this general form:

var = expression;

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ |
multiplicative * /%

additive + -

shift << >> >>>

relational < > <= >= instanceof

equality == I=

bitwise AND &

bitwise exclusive OR .

bitwise inclusive OR |

logical AND &&

logical OR I

ternary ?

assignment = 4= —= *= /= %= §= "= |= <<= >>= >>>=

Using Parentheses

Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following expression:

a>>b+ 3

This expression first adds 3 to b and then shifts a right by that result. That is, this expression can
be rewritten using redundant parentheses like this:

a > (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you will
need to parenthesize the expression like this:

(a >> b) + 3

Type Conversion in Assignments

o |f the two types are compatible, then Java will perform the conversion automatically.
For example, it is always possible to assign an int value to a long variable.

e However, not all types are compatible, and thus, not all type conversions are implicitly
allowed. For instance, there is no automatic conversion defined from double to byte.

e Fortunately, it is still possible to obtain a conversion between incompatible types.

e Jo do so, you must use a cast, which performs an explicit conversion between
incompatible types.

Java's Automatic Conversions

When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

e The two types are compatible.
e The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the int
type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types, are
compatible with each other. However, there are no automatic conversions from the numeric
types to char or boolean. Also, char and boolean are not compatible with each other.

Casting Incompatible Types

To create a conversion between two incompatible types, you must use a cast. A cast is simply
an explicit type conversion. It has this general form:

(target-type) value

Expressions

An expression is a construct made up of variables, operators, and method invocations, which
are constructed according to the syntax of the language, that evaluates to a single value.

int cadence = 0;
anArray[0] = 100;
System.out.println ("Element 1 at index 0: " + anArray|[0]);

int result =1 + 2; // result is now 3
if (valuel == value2)
System.out.println ("valuel == value2");

