INHERITANCE

Asmaliza Ahzan
IVERSON ASSOCIATES SDN BHD [Company address]

Inheritance

Inheritance Basics

e Using inheritance, you can create a general class that defines traits common to a set of
related items.

e This class can then be inherited by other, more specific classes, each adding those
things that are unique to it.

e In the terminology of Java, a class that is inherited is called a superclass.

e The class that does the inheriting is called a subclass.

e Therefore, a subclass is a specialized version of a superclass.

e [tinherits all of the members defined by the superclass and adds its own, unigque
elements.

// A simple example of inheritance.
// Create a superclass.
class A {

int i, j;

void showij() {
System.out.println("i and j:

+ i+ + 3);
}
}

// Create a subclass by extending class A.
class B extends A {
int k;

void showk() {
System.out.println("k: " + k);

}

void sum() {
System.out.println("i+j+k:

+ (1 +3+Kk));
}

Member Access and Inheritance

e Although a subclass includes all of the members of its superclass, it cannot access
those members of the superclass that have been declared as private.

/* In a class hierarchy, private members remain
private to their class.
This program contains an error and will not
compile.
*/
// Create a superclass.
class A {
int i; // public by default
private int j; // private to A

void setij(int x, int y) {
i = x;
i=v;

}

// A's j 1is not accessible here.
class B extends A {
int total;

void sum() {
total = i + j; // ERROR, j is not accessible here
}

}

class Access {
public static void main(String args[]) {
B subOb = new B();
subOb.setij(10, 12);
subOb.sum();
System.out.println("Total is " + subOb.total);

This program will not compile because the use of j inside the sum{) method of B causes an
access violation. Since j is declared as private, it is only accessible by other members of its own
class. Subclasses have no access to it.

Constructors and Inheritance

o Although a subclass inherits all of the methods and variables from superclass, it does
not inherit constructors.

e Subclasses need to create its own constructor and add a call to the superclass's
constructor.

public class Manager extends Employee {
private String department;

public Manager(String name, double salary, String department) {
super(name, salary);
this.department = department;

}

public Manager(String name, String department) {
super(name);
this.department = department;

Using super to Call Superclass Constructors

e Asuperclass's constructor is always called in addition to the a subclass's constructor.
e The call super() can take any number of arguments appropriate to the various

constructors available in the parent class, but it must be the first statement in the
constructor.

e Example as above.

Using super to Access Superclass Members

e The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which itis used.

e This usage has the following general form super.member

e Here, member can be either a method or an instance variable.

// toString method in Employee class

@Override
public String toString() {
return "Name: " + this.name +
"\nSalary: " + this.salary +
"\nBirthdate: " + this.birthDate;
}
// toString method in Manager class
@Override
public String toString() {
return super.toString() + "\nDepartment: " + this.department;

}

Creating a Multilevel Hierarchy

e Up to this point, we have been using simple class hierarchies that consist of only a
superclass and a subclass.

e However, you can build hierarchies that contain as many layers of inheritance as you
like.

o Asmentioned, it is perfectly acceptable to use a subclass as a superclass of another.

Employee

+name : String = ""
+salary : double
+birthDate : Date

+getDetails() : String

_-—I? 1:\;7

Manager

Engineer Secretary

+department : Etring = ""

N\

Director

+carAllowance : double

+increaselfllowance ()

e The Employee class contains three attributes (name, salary, and birthdate), as well as
one method (getDetails).

e The Manager class inherits all of these members and specifies an additional attribute,
department, as well as the getDetails method.

e The Director class inherits all of the member of Employee and Manager and specifies a
carAllowance attribute and a new method, increaseAllowance.

e Similarly, the Engineer and Secretary classes inherit the members of the Employee class
and might specify additional members {(not shown).

When Are Constructors Executed?

o When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy executed?

e For example, given a subclass called B and a superclass called A, is A's constructor
executed before B's, or vice versa?

e The answer is that in a class hierarchy, constructors complete their execution in order
of derivation, from superclass to subclass.

e Further, since super() must be the first statement executed in a subclass’ constructor,
this order is the same whether or not super() is used.

e |f super()is not used, then the default or parameterless constructor of each superclass
will be executed.

// Demonstrate when constructors are executed.
// Create a super class.
class A {

AQ) {

System.out.println("Inside A's constructor.");
}
}// Create a subclass by extending class A.

class B extends A {

BO) {

System.out.println("Inside B's constructor.");
}

}

// Create another subclass by extending B.
class C extends B {

cO |

System.out.println("Inside C's constructor.");
}

}

class CallingCons {
public static void main(String args[]) {
C c =new C();
}

Method Overriding

e Inaddition to producing a new class based on an old one by additional features, you
can modify existing behaviour of the parent class.

e [famethod is defined in a subclass so that the name, return type, and argument list
match exactly those of a method in the parent class, then the new method is said to
override the old one.

// getDetails method in Employee class
public String getDetails() {
return "Name: " + this.name +
"\nSalary: " + this.salary +
"\nBirthdate: " + this.birthDate;

// getDetails method in Manager class
public String getDetails() {
return super.toString() + "\nDepartment:

+ this.department;

}

The Manager class has a getDetails method by definition because it inherits one from the
Employee class. However, the original method has been replaced, or overridden, by the child
class’'s version.

Overridden Methods Support Polymorphism

o While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power.

o Indeed, if there were nothing more to method overriding than a name space
convention, then it would be, at best, an interesting curiosity, but of little real value.
However, this is not the case.

e Method overriding forms the basis for one of Java's most powerful concepts: dynamic
method dispatch.

e Dynamic method dispatch is the mechanism by which a call to an overridden method
is resolved at run time, rather than compile time.

e Dynamic method dispatch is important because this is how Java implements run-time
polymorphism.

Polymorphism

e An object has only one form (the one that is given to it when constructed).
e However, a variable is polymorphic because it can refer to objects of different forms.
e Java permits you to refer to an object with a variable that is one of the parent class type.

Employee e = new Manager("John", "IT");// legal
e.getDetails();

Which getDetails method will be invoked here? From Employee or Manager class?

This is the aspect of polymorphism, which is an important feature of object-oriented languages.
The behaviour is not determined by the compile time type of the variable, instead it refers to
during runtime.

In the above codes, the getDetails method executed is from the object’s real type, the Manager
class.

Why Override Methods?

o Asstated earlier, overridden methods allow Java to support run-time polymorphism.

e Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while
allowing subclasses to define the specific implementation of some or all of those
methods.

e Overridden methods are another way that Java implements the “one interface, multiple
methods” aspect of polymorphism.

Using Abstract Methods

e Abstract methods are those defined with abstract keyword at its method signature.
abstract type name(parameter-list);

e Abstract methods mean there is no implementation provided, that is not method body.

abstract void callme () ;

There are situations in which you will want to define a superclass that declares the structure of a
given abstraction without providing a complete implementation of every method. That is,
sometimes you will want to create a superclass that only defines a generalized form that will be
shared by all of its subclasses, leaving it to each subclass to fill in the details

Using Abstract Classes

e Any class that contains one or more abstract methods must also be declared abstract.

e To declare a class abstract, you simply use the abstract keyword in front of the class
keyword at the beginning of the class declaration.

e There can be no objects of an abstract class. That s, an abstract class cannot be
directly instantiated with the new operator.

e Any subclass of an abstract class must either implement all of the abstract methods in
the superclass, or be declared abstract itself.

//A Simple demonstration of abstract.
abstract class A {
abstract void callme();

//concrete methods are still allowed in abstract classes
void callmetoo() {
System.out.println("This is a concrete method.");
}
}

class B extends A {
void callme() {
System.out.println("B's implementation of callme.");

}

Using final with inheritance

The keyword final has three uses. First, it can be used to create the equivalent of a named

constant. This use was described in the preceding chapter. The other two uses of final apply to
inheritance.

Using final to Prevent Overriding

e Todisallow a method from being overridden, specify final as a modifier at the start of its
declaration.

e Methods declared as final cannot be overridden.

class A {
final void meth() {
System.out.println("This is a final method.");

}

Using final to Prevent Inheritance

e Sometimes you will want to prevent a class from being inherited. To do this, precede
the class declaration with final.

e Declaring a class as final implicitly declares all of its methods as final, too.

// this is a final class
final class A {
final void meth() {
System.out.println("This is a final method.");
}

The Object Class

e Thereis one special class, Object, defined by Java.

o All other classes are subclasses of Object.

e Thatis, Objectis a superclass of all other classes.

e This means that a reference variable of type Object can refer to an object of any other

class.
e Object defines the following methods, which means that they are available in every
object.
Method Purpose
Object clone() Creates a new object that is the same as the object
being cloned.
boolean Determines whether one object is equal to another.
equals(Object object)
Class<?> getClass() Obtains the class of an object at run time.
int hashCode() Returns the hash code associated with the invoking
object.

String toString() Returns a string that describes the object.

