Practices for Lesson 9:
Lambda Built-in Functional
Interfaces

Chapter 9

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 1



Practices for Lesson 9: Overview

Practice Overview

In these practices, create lambda expressions using the built-in functional interfaces found in
the java.util. function package.

The focus of this lesson and examples is to make you familiar with the built-in functional
interfaces for use with lambda expressions. They are often used as parameters for method calls
with streams. Familiarity with these interfaces makes working with streams much easier.

Predicate

The predicate interface has already been covered in the last lesson. Essentially, it is a
lambda expression that takes a generic type and returns a boolean.

AO01Predicate.java

10 public class AOlPredicate {

11

12 public static void main (String[] args) {

13

14 List<SalesTxn> tList = SalesTxn.createTxnList () ;
15

16 Predicate<SalesTxn> massSales =

17 t -> t.getState() .equals(State.MA);

18

19 System.out.println("\n== Sales - Stream");
20 tList.stream()

21 .filter (massSales)

22 .forEach(t -> t.printSummary()) ;

23

24 System.out.println("\n== Sales - Method Call");
25 for (SalesTxn t:tList) {

26 if (massSales.test(t))

27 t.printSummary () ;

28 }

29 }

30 }

31 }

In the preceding code, the lambda expression is used in a filter for a stream. The second
example also shows that the test method can be executed on any SalesTxn element using
the functional interface that stores the Predicate.

To repeat, a Predicate takes in a generic type and returns a boolean.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 2



Consumer

The Consumer interface specifies a generic type but returns nothing. Essentially, it is a void
return type for lambdas. In the following example, the lambda expression specifies how a
transaction should be printed.

A02Consumer.java
10 public class AO02Consumer
11
12 public static void main (String[] args) {
13
14 List<SalesTxn> tList = SalesTxn.createTxnList () ;
15 SalesTxn first = tList.get(0) ;
16
17 Consumer<SalesTxn> buyerConsumer = t ->
18 System.out.println("Id: " + t.getTxnId()
19 + " Buyer: " + t.getBuyerName()) :;
20
21 System.out.println("== Buyers - Lambda") ;
22 tList.stream() . forEach (buyerConsumer) ;
23
24 System.out.println("== First Buyer - Method") ;
25 buyerConsumer.accept (first) ;
26 }
27 }

For the forEach method, the default argument is a Consumer. The lambda expression is
basically just a print statement that is used in the two cases shown. In the second example, the
accept method is called along with a transaction. This prints the first transaction in the list.

The key point here is that the Consumer takes a generic type and returns nothing. It is
essentially a void return type for lambda expressions.

Function

The Function interface specifies two generic object types to be used in the expression. The
first generic object is used in the lambda expression and the second is the return type from the
lambda expression. The example uses a SalesTxn to return a String.

AO03Function.java

10 public class AO3Function (

11

12 public static void main (String[] args) {

13

14 List<SalesTxn> tList = SalesTxn.createTxnList () ;
15 SalesTxn first = tList.get(0) ;

16

17 Function<SalesTxn, String> buyerFunction =

18 t -> t.getBuyerName() ;

19

20 System.out.println("\n== First Buyer") ;

21 System.out.println (buyerFunction.apply (first)) ;

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 3



The Function has one method named apply. In this example, a String is returned to the
print statement.

With a Function the key concept is that a Function takes in one type and returns another.

Supplier

The supplier interface specifies one generic type, which is returned from the lambda
expression. Nothing is passed in so this is similar to a Factory. The follow expression example
creates and returns a SalesTxn and adds it to our existing list.

A04Supplier.java

13 public static void main(Stringl[] args) {
14
15 List<SalesTxn> tList = SalesTxn.createTxnList () ;
16 Supplier<SalesTxn> txnSupplier =
17 () -> new SalesTxn.Builder()
18 .txnId(101)
19 .salesPerson("John Adams")
20 .buyer (Buyer.getBuyerMap () .get ("PriceCo"))
21 .product ("Widget")
22 .paymentType ("Cash")
23 .unitPrice (20)
24 .unitCount (8000)
25 .txnDate (LocalDate.of (2013,11,10))
26 .city ("Boston")
27 .state(State.MA)
28 .code ("02108™")
29 .build() ;
30
31 tList.add (txnSupplier.get()) ;
32 System.out.println("\n== TList") ;
33 tList.stream() .forEach(SalesTxn: :printSummary) ;
34 }
Notice a Supplier has no input arguments, there is merely empty parentheses: () ->. The

example uses a builder to create a new object. Notice Supplier has only one method get, which
in this case returns a SalesTxn.

The key take away with a Supplier is that it has no input parameters but returns a generic
type.

So that pretty much covers the basic function interfaces. However, there are a lot of variations.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 4



Primitive Types - ToDoubleFunction and AutoBoxing

There are primitive versions of all the built-in lambda functional interfaces. The following code
shows an example of the ToDoubleFunction interface.

AO5PrimFunction_java

11 public class AOS5PrimFunction

12

13 public static void main(String[] args) {

14

15 List<SalesTxn> tList = SalesTxn.createTxnList () ;
16 SalesTxn first = tList.get (0);

17

18 ToDoubleFunction<SalesTxn> discountFunction =
19 t -> t.getTransactionTotal ()

20 * t.getDiscountRate();

21

22 System.out.println("\n== Discount");

23 System.out.println(

24 discountFunction.applyAsDouble (first)) ;
25

Remember a Function takes in one generic and return a different generic. However, the
ToDoubleFunction interface has only one generic specified. That is because it takes a
generic type as input and returns a double. Notice also that the method name for this
functional interface is apply2sDouble. So to repeat, the ToDoubleFunction takes in a
generic and returns a double. There are also 1ong and int versions of this interface.

Why create these primitive variations? Consider this piece of code.
AO5PrimFunction.java

26 // What's wrong here?

27 Function<SalesTxn, Double> taxFunction =

28 t -> t.getTransactionTotal () * t.getTaxRate();

29 double tax = taxFunction.apply(first); // What happerns here?
30 }

31 }

With object types, this would require the autoboxing and unboxing of primitive values. Not good
for performance. These specialized primitive interfaces address this issue and allow for
operations on primitive types.

Primitive Types — DoubleFunction

What if you need to pass in a primitive to a lambda expression? Well, the DoubleFunction
interface is a great example of that.

A06DoubleFunction.java

5 public class AO6DoubleFunction

6

7 public static void main(Stringl[] args) {

8

9 AO06DoubleFunction test = new AO6DoubleFunction() ;
10

11 DoubleFunction<String> calc =

12 t -> String.valueOf(t * 3);

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 5



13

14 String result = calc.apply(20);

15 System.out.println("New value is: " + result);
16 }

17 }

Primitive interfaces like DoubleFunction, IntFunction, or LongFunction take a primitive
as input and return a generic type. In this case, a double is passed to the lambda expression
and a String is returned. Once again, this avoids any boxing issues.

Binary Intefaces — BiPredicate

A number of examples having the Predicate interface have been explored so far in this
course. A Predicate takes a generic class and returns a boolean. But what if you want to
compare two things? There is a binary specialization for that.
The BiPredicate interface allows two object types to be used in a lambda expression. Binary
interfaces for the other main interface types are also available.

AO07Binary.java

10 public class A07Binary ({

11

12 public static void main(Stringl[] args) {

13

14 List<SalesTxn> tList = SalesTxn.createTxnList () ;
15 SalesTxn first = tList.get(0) ;

16 String testState = "CA";

17

18 BiPredicate<SalesTxn, String> stateBiPred =
19 (t, s) -> t.getState().equals(State.Ca);
20

21 System.out.println("\n== First in CA?");
22 System.out.println(

23 stateBiPred.test (first, testState)):;

24 }

25 }

The example specifies a SalesTxn and a String as the generic types used in the lambda
expression. Note that the types are specified with t and s and a boolean is still returned. It is
the same result as a Predicate, but with two input types.

UnaryOperator

The Function interface takes in one generic and returns a different generic. What if you want
to return the same thing? Then the UnaryOperator interface is what you need.

AO08Unary.java
10 public class A08Unary ({
11
12 public static void main(Stringl[] args) {
13
14 List<SalesTxn> tList = SalesTxn.createTxnList () ;
15 SalesTxn first = tList.get (0);
16
17 UnaryOperator<String> unaryStr =
18 s -> s.toUpperCase();

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 6



19

20 System.out.println ("== Upper Buyer") ;

21 System.out.println(

22 unaryStr.apply(first.getBuyerName())) ;
23 }

24 }

The example takes a String and returns an uppercase version of that String.

API Docs

As a reminder, it is difficult to remember all the variations of functional interfaces and what they
do. Make liberal use of the API docs to remember your options or what is returned for the
java.util.function package.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 7



Practice 9-1: Create Consumer Lambda Expression

Overview
In this practice, create a Consumer lambda expression to print out employee data.

Note that salary and startDate fields were added to the Employee class. In addition,
enumerations are included for Bonus and VacAccrual. The enums allow calculations for
bonuses and vacation time.

Assumptions
You have completed the lecture portion of the course.

Tasks

1. Open the EmployeeSearch09-01Prac project.
e Select File > Open Project.
e Browseto /home/oracle/labs/09-LambdaBuiltIns/practices/practicel
e Select EmployeeSearch09-01Prac and click Open Project.

2. Open the Employee.java file and become familiar with the code included in the file.

3. Open the ConsumerTest . java file and make the following updates.
4. Write a Consumer lambda expression to print data about the first employee in the list.
a. The data printed should be the following: "Name: " + e.getSurName() + "
Role: " + e.getRole() + " Salary: " + e.getSalary()

5. Write a statement to execute the lambda expression on the £irst variable.
6. Your output should look similar to the following:

=== First Salary
Name: Baker Role: STAFF Salary: 40000.0

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 8



Practice 9-2: Create a Function Lambda Expression

Overview

In this practice, create a ToDoubleFunction lambda expression to calculate an employee
bonus.

Assumptions
You have completed the lecture portion of the course and the previous practice.

Tasks

1. Open the EmployeeSearch09-02Prac project.
e Select File > Open Project.
e Browse to /home/oracle/labs/09-LambdaBuiltIns/practices/practice2
e Select EmployeeSearch09-02Prac and click Open Project.

2. Open the Bonus. java file and review the code included in the file.

Open the FunctionTest . java file and make the following updates.

4. Write a ToDoubleFunction lambda expression to calculate the bonus for the first
employee in the list.

a. The bonus can be calculated as follows: e.getSalary () *
Bonus.byRole (e.getRole())

w

5. Write a statement to execute the lambda expression on the first variable.
6. Your output should look similar to the following:

=== First Employee Bonus

Name: Bob Baker Role: STAFF Dept: ENG eMail: bob.baker@example.com
Salary: 40000.0

Bonus: 800.0

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 9



Practice 9-3: Create a Supplier Lambda Expression

Overview

In this practice, create a Supplier lambda expression to add a new employee to the employee
list.

Assumptions
You have completed the lecture portion of the course and the previous practice.

Tasks

1. Open the EmployeeSearch09-03Prac project.
e Select File > Open Project.
e Browseto /home/oracle/labs/09-LambdaBuiltIns/practices/practice3.
e Select EmployeeSearch09-03Prac and click Open Project.

2. Open the supplierTest.java file and make the following updates.

3. Write a Supplier lambda expression to add a new employee to the list. The employee
data is as follows:

Given name: Jill

SurName: Doe

Age: 26

Gender: Gender.FEMALE
Role: Role.STAFF

Dept: Sales

StartDate: LocalDate.of(2012, 7, 14)
Salary: 45000

Email: jill. doe@example.com
PhoneNumber: 202-123-4678
Address: 33 3rd St

City: Smallville

State: KS

Code: 12333

Hint: Her data is almost exactly the same as her sister Jane and can be found in the
Employee.java file.

4. Write a statement to add the new employee to the employee list.

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 10



5. Your output should look similar to the following after adding the new employee to the list:

=== Print employee list after

Name: Bob Baker Role: STAFF Dept: ENG eMail: bob.baker@example.com
Salary: 40000.0

Name: Jane Doe Role: STAFF Dept: Sales eMail: jane.doe@example.com
Salary: 45000.0

Name: John Doe Role: MANAGER Dept: Eng eMail: john.doe@example.com
Salary: 65000.0

Name: James Johnson Role: MANAGER Dept: Eng eMail:
james.johnson@example.com Salary: 85000.0

Name: John Adams Role: MANAGER Dept: Sales eMail:
john.adams@example.com Salary: 90000.0

Name: Joe Bailey Role: EXECUTIVE Dept: Eng eMail:
joebob.bailey@example.com Salary: 120000.0

Name: Phil Smith Role: EXECUTIVE Dept: HR eMail:
phil.smith@examp;e.com Salary: 110000.0

Name: Betty Jones Role: EXECUTIVE Dept: Sales eMail:
betty.jones@example.com Salary: 140000.0

Name: Jill Doe Role: STAFF Dept: Sales eMail: jill.doe@example.com
Salary: 45000.0

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces
Chapter 9 - Page 11



Practice 9-4: Create a BiPredicate Lambda Expression

Overview
In this practice, create a BiPredicate lambda expression to calculate an employee bonus.

Assumptions
You have completed the lecture portion of the course and the previous practice.

Tasks

1.

Open the EmployeeSearch09-04Prac project.

e Select File > Open Project.

e Browseto /home/oracle/labs/09-LambdaBuiltIns/practices/practice4.
e Select EmployeeSearch09-04Prac and click Open Project.

Open the BiPredicateTest . java file and make the following updates.

Write a BiPredicate lambda expression to compare a field in the employee class to a

string.

a. The searchState variable should be compared to the state value in the employee
element.

Write an expression to perform the logical test in the for loop.

Your output should look similar to the following:

=== Print matching list

Name: Bob Baker Role: STAFF Dept: ENG eMail: bob.baker@example.com
Salary: 40000.0

Name: Jane Doe Role: STAFF Dept: Sales eMail: jane.doe@example.com
Salary: 45000.0

Name: John Doe Role: MANAGER Dept: Eng eMail: john.doe@example.com
Salary: 65000.0

Copyright © 2014, Oracle and/or its affiliates. All rights reserved.

Practices for Lesson 9: Lambda Built-in Functional Interfaces

Chapter 9 - Page 12




